
On the “arrest” of inverse energy cascade and the Rhines
scale

Semion Sukoriansky∗, Nadejda Dikovskaya,
Department of Mechanical Engineering

and Perlstone Center for Aeronautical Engineering Studies
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Boris Galperin
College of Marine Science, University of South Florida

140 7th Avenue South, St. Petersburg,
FL 33701, USA

Submitted to the Journal of the Atmospheric Sciences on December 17, 2006

Abstract

We revise the notion of the cascade “arrest” in aβ-
plane turbulence in the context of continuously forced
flows using both theoretical analysis and numerical
simulations. We demonstrate that the upscale en-
ergy propagation cannot be stopped by aβ-effect and
can only be absorbed by friction. A fundamental
dimensional parameter in flows with aβ-effect, the
Rhines scale,LR, has traditionally been associated
with the cascade “arrest” or with the scale separat-
ing turbulence and Rossby wave dominated spectral
ranges. We show that rather than being a measure
of the inverse cascade arrest,LR is a characteris-
tic of different processes in different flow regimes.
In unsteady flows,LR can be identified with the
moving “energy front” propagating towards the de-
creasing wavenumbers. When large-scale energy
sink is present,β-plane turbulence may attain sev-
eral steady-state regimes. Two of these regimes are
highlighted, friction-dominated and zonostrophic. In
the former,LR does not have any particular signifi-
cance, while in the latter, the Rhines scale nearly co-
incides with the characteristic length associated with
the large-scale friction. Spectral analysis in the fre-
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quency domain demonstrates that Rossby waves co-
exist with turbulence on all scales including those
much smaller thanLR thus indicating that the Rhines
scale cannot be viewed as a crossover between turbu-
lence and Rossby wave ranges.

1. Introduction

Terrestrial and planetary circulations are described
by nonlinear equations that support various types of
waves in the linear limit. The real flows exhibit a
complicated interplay between turbulence and waves.
While in a certain range of scales, turbulent scram-
bling may overwhelm the wave behavior and lead
to the disappearance of the dispersion relation (such
as in the small-scale range of stably stratified flows;
see e.g., Sukoriansky et al. (2005)), on other scales,
the wave terms cause turbulence anisotropization and
emergence of systems with strong wave-turbulence
interaction. Systems that combine anisotropic turbu-
lence and waves exhibit behavior very different from
that of the classical isotropic and homogeneous tur-
bulence (McIntyre 2001). In the context of large-
scale atmospheric flows, the interaction between tur-
bulence and waves yields dynamically rich macro-
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turbulence (Held 1999; Schneider 2006), the notion
that underlies diverse phenomena ranging from a lo-
cal weather to a global climate. The subtlety of this
interaction is further highlighted by the fact that due
to the planetary rotation and Taylor-Proudman theo-
rem, large-scale flows are quasi-two-dimensionalized
and may be conducive to the development of the in-
verse energy cascade (Read 2005). One of the param-
eters that characterize macroturbulence is the Rhines
wavenumber,kR = (β/2U )1/2, or the Rhines scale,
LR ∼ k−1

R , whereU is the r.m.s. fluid velocity and
β is the northward gradient of the Coriolis parameter
(Rhines 1975) (in the original paper, this wavenum-
ber was denoted bykβ; here,kR is used instead, as
the notationkβ is reserved for another wavenumber
to appear later). At this scale, the inverse cascade
supposedly becomes arrested, and the nonlinear tur-
bulent behavior is replaced by excitation of linear
Rossby waves. This scale has also been associated
with flow reorganization into the bands of alternating
zonal jets, the process known as zonation, and the
width of the jets has often been scaled withk−1

R . The
Rhines scale plays a prominent role in many theories
of large-scale atmospheric and oceanic circulation
(see, e.g., James and Gray (1986); Vallis and Mal-
trud (1993); Held and Larichev (1996); Held (1999);
Lapeyre and Held (2003); Schneider (2004); LaCasce
and Pedlosky (2004); Vallis (2006)) as well as in the-
ories of planetary circulations (see, e.g., the review by
Vasavada and Showman (2005)) and, possibly, even
stellar convection (see, e.g., Miesch (2003)).

The meaning of the Rhines scale is not always clear,
however. Even in the barotropic case, different
regimes would arise for continuously forced and de-
caying flows, for flows with and without friction, and
for flows in bounded and unbounded domains. As
a result, the Rhines scale may be time-dependent,
stationary or entirely obscured by friction. In many
studies, the scaling withk−1

R is implied but the coeffi-
cient of proportionality varies in a wide range. There
also exists a multitude of other scaling parameters
that characterize various aspects of the flow and flow
regimes. It is important, therefore, to understand the
hierarchy of these parameters and the place ofkR in
this hierarchy. This is precisely the goal of the present
study. This goal cannot be achieved without clarifica-
tion of the notion of the “arrest” of the inverse energy

cascade by the Rossby wave propagation which, thus,
becomes another focal point of this study. Both issues
will be addressed theoretically; the theoretical results
will be substantiated in numerical simulations.

The paper is organized in the following fashion. The
next section presents the basics of the theory of two-
dimensional (2D) turbulence with aβ-effect and ac-
centuates its problematics. Section 3 presents analy-
sis of the interaction between inverse energy cascade
of 2D turbulence and Rossby waves and discusses the
notion of the cascade “arrest.” Section 4 elaborates
this analysis and clarifies the meaning of the Rhines
scale using numerical simulations of barotropic 2D
turbulence on the surface of a rotating sphere. In ad-
dition, that section describes the hierarchy of scaling
parameters and corresponding flow regimes as well as
the interaction between turbulence and Rossby waves
in different regimes. Finally, section 5 presents dis-
cussion and some conclusions.

2. Turbulence and Rossby waves:
The basics

The interaction between 2D turbulence and Rossby
waves has been considered in the pioneering study
by Rhines (1975). Starting with the barotropic vortic-
ity equation on aβ-plane, he concentrated on mainly
unforced barotropic flows caused by initially closely
packed fields of eddies spreading from a state with a
δ-function like spectrum peaked at some wavenum-
ber k0. Among the major conclusions of the paper,
the following have the most relevance to the present
study:

(1) at the wavenumber, denoted askR, at which
the root-mean-square velocityU is equal to the
phase speed of Rossby waves with an average
orientation,cp = β/2k2, there exists a subdivi-
sion of the spectrum on turbulence (k > kR) and
wave (k < kR) modes;

(2) the expansion of the flow field tokR triggers
wave propagation and slowing down, or the “ar-
rest” of the cascade to smaller wavenumbers;
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(3) triad interactions of the modes with wavenum-
bers close tokR require simultaneous resonance
in wavenumbers and frequencies;

(4) on the average, triad interactions transfer energy
to modes with smaller frequencies and smaller
wavenumbers causing the anisotropization of
the flow field. As a result, the energy accumu-
lates in modes with small north-south wavenum-
bers that correspond to east-west currents, zonal
jets, giving rise to the process of zonation;

(5) the width of the zonal jets scales withk−1
R ;

(6) in a steadily forced flow, the spectrum is ex-
pected to develop a sharp peak atkR and rapidly
decrease fork > kR.

The items (3) and (4) have been confirmed in nu-
merous theoretical, numerical and experimental stud-
ies (see, e.g., Williams (1975, 1978); Holloway
and Hendershott (1977); Panetta (1993); Vallis and
Maltrud (1993); Chekhlov et al. (1996); Cho and
Polvani (1996); Nozawa and Yoden (1997); Huang
and Robinson (1998); Huang et al. (2001); Read et al.
(2004); Vasavada and Showman (2005); Galperin
et al. (2006)). A new light on zonation was shed by
Balk (2005). Exploring a new invariant for inviscid
2D flows with Rossby waves (Balk 1991; Balk and
van Heerden 2006), he showed that the transfer of en-
ergy from small to large scales takes place in such a
way that most of the energy is directed to the zonal
jets. The rest of the aforementioned issues, how-
ever, remain controversial, particularly when com-
pounded with other complicating factors such as the
friction, continuous forcing, effects of the bound-
aries, effects of stratification, etc. Let us consider,
for example, a realistic system in which the bottom
friction acts like a large-scale drag. One can intro-
duce a wavenumber associated with that drag,kfr,
as a wavenumber at which the characteristic friction
time is equal to that of the flow. Ifkfr > kR then
the frictional processes would forestall the arrest and
the Rhines scale would require modification (James
and Gray 1986; Danilov and Gurarie 2002; Smith
et al. 2002). In flows with continuous small-scale
forcing at a rateε, the equilibrium between the eddy
turnover time and the Rossby wave period selects an
anisotropic transition wavenumber with an amplitude

kβ ∝ (β3/ε)1/5 (the proportionality coefficient will
be established later) and the angular distribution re-
sembling a dumb-bell (Vallis and Maltrud 1993; Hol-
loway 1986; Vallis 2006). The introduction ofkβ

raises a slew of new questions. If there is an “arrest”
in the forced flows, which one of the two wavenum-
bers,kR andkβ, should be associated with the “ar-
rest” scale? At which scale the anticipated in item
(2) Rossby wave excitation is triggered? Can Rossby
waves coexist with turbulence on scales intermediate
betweenk−1

R andk−1
β ? With regard to item (5) one

may ask which one of these two wavenumbers should
be used as a scaling parameter for the width of the
zonal jets? Indeed, although the mechanism of zona-
tion has by now been solidly established, the scaling
of the jets’ width with the Rhines scale has not been
conclusive as the coefficient of proportionality has so
far been elusive. For instance, Hide (1966) used a
scale similar tok−1

R for the width of the equatorial
jets on Jupiter and Saturn while Williams (1978) and
others applied it to the off-equatorial jets. Conclu-
sive scaling withk−1

R has materialized neither in the
Grenoble experiment (Read et al. 2004) nor in the
recent analysis of the eddy-resolving simulations of
oceanic jets by Richards et al. (2006).

Chekhlov et al. (1996) have scrutinized the notion
of the “arrest” of the inverse energy cascade and as-
serted that Rossby wave excitation cannot halt the
cascade in principle. On the other hand, they have
confirmed that theβ-term in the vorticity equation
impedes triad interactions hence reducing the effec-
tiveness of nonlinear transfers and increasing their
characteristic time scale. Furthermore, Chekhlov
et al. (1996), Smith and Waleffe (1999) and Huang
et al. (2001) have shown that the spectrum of a
forcedβ-plane turbulence is strongly anisotropic. On
large scales, the spectrum of the zonal modes is pro-
portional to β2k−5

y . It is important to understand
the synergy between the slowing-up of the nonlin-
ear interactions and spectrum steepening. The re-
duction in the effectiveness of the triad interactions
is due to the requirement of the simultaneous reso-
nance in wavenumbers and frequencies (Rhines 1975,
1979; Holloway and Hendershott 1977; Carnevale
and Martin 1982). The ensuing cascade anisotropiza-
tion facilitates strong energy flux to the zonal modes
(Rhines 1975; Vallis and Maltrud 1993; Chekhlov
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et al. 1996). Due to the frequency resonance imped-
iment, however, the zonal modes cannot effectively
transfer their energy to other modes. Since the to-
tal energy flux must be conserved, the spectral en-
ergy density of the zonal modes has to increase. The
steepening of the zonal spectrum eventually reaches
theβ2k−5

y distribution at which the frequency reso-
nance condition is relaxed and the zonal modes can
again efficiently exchange energy with other modes.
This exchange allows for the zonal modes to dispose
of the energy excessive, on the average, of theβ2k−5

y

level and maintain a steady and statistically stable
flow regime (Huang et al. 2001). Theβ2k−5

y spec-
trum is somewhat reminiscent of the isotropic−5 dis-
tribution discussed by Rhines (1975). He has put the
existence of such a sharp slope in doubt, however,
because it would imply a strong dependence on the
smallest wavenumbers with the highest energy levels
which would lead to a strong nonlocality negating the
dimensional arguments that facilitated theβ2k−5 de-
pendence in the first place. Sukoriansky et al. (2002)
have elucidated that in the case of an anisotropic
spectrum, the arguments of nonlocality may not be
applicable hence one could expect that a flow regime
with a steepzonal spectrum,

EZ(ky) = CZβ
2k−5

y , (1)

may be established (here,CZ is anO(1) coefficient).
The stability of such a regime is stipulated by the
Rayleigh-Kuo criterion (Chekhlov et al. 1996; Huang
et al. 2001; McWilliams 2006). Furthermore, sim-
ilarly to Lilly (1972) in the case of isotropic, non-
rotating flows, Sukoriansky et al. (2002) have argued
that only the large-scale drag can balance the inverse
cascade and facilitate the establishment of a steady
state in flows with aβ-effect. They have reproduced
the spectrum (1) in forced, dissipative simulations of
2D barotropic turbulence with a linear drag on the
surface of a rotating sphere and showed that in such
flows, kR is close tokfr. They have also found an
evidence of the spectrum (1) on all four Solar giant
planets. Later, using the eddy-resolving simulations
by Nakano and Hasumi (2005) of the North Pacific
ocean, Galperin et al. (2004) have shown that this
spectrum may also be present in the barotropic mode
of the subsurface oceanic alternating zonal jets.

Considering a space of parameters that characterize
different regimes in barotropic, forced and dissipative
β-plane turbulence, Galperin et al. (2006) have found
that in a certain subspace, a flow attains a universal
regime with the zonal spectrum (1) andCZ ' 0.5.
This subspace is wide enough to include important
laboratory, terrestrial and planetary flows (Galperin
et al. 2006).

Despite the progress made in understanding of var-
ious aspects of aβ-plane turbulence, there still re-
mains a great deal of confusion regarding the “arrest”
of the inverse energy cascade and the Rhines scale.
The fact that the interplay between turbulence and
Rossby waves has never been thoroughly investigated
only adds to this confusion. The next section gathers
some theoretical arguments that may help to clarify
this perplexity. In section 4 these arguments will be
substantiated via numerical experimentation.

3. Is the cascade really arrested?

The cascade “arrest” is often understood as a transi-
tion of a flow character from strongly nonlinear and
turbulent to weakly nonlinear and wave-dominated
under the action of a nondissipative “extra-strain” in
the Bradshaw (1973) terminology, aβ-effect. This
transition presumably takes place at a scalek−1

R .
Such an interpretation applies to unforced flows con-
sidered by Rhines (1979) in great detail (see also Ma-
jda and Wang (2006), chapters 10-13). Rhines (1979)
showed that in unforced flows, both the nonlinear
term and a rate of the energy transfer to large scales
decrease with time. This tendency can be traced to
the impediment to triad interactions caused by the
frequency resonance condition discussed in the previ-
ous section. A “soft” transition from a strongly non-
linear to a weakly nonlinear regime takes place at the
crossover wavenumber,kR (Rhines 1979). This in-
terpretation of the cascade “arrest” is sometimes ap-
plied to forced flows (James and Gray 1986). The ex-
tension of the results valid for the unforced dynamics
(ε=0) to flows with continuous forcing (ε 6= 0) may
be problematic however. Already at the level of the
dimensional analysis, the presence of the non-zero
ε and appearance of the non-trivial wavenumberkβ
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point to significant differences between the two cases.
Vallis and Maltrud (1993) have first recognized the
importance of the transitional wavenumber,kβ. In
their forced - dissipative simulations, Vallis and Mal-
trud (1993) observed a “piling up” of the computed
energy spectrum in the vicinity ofkβ. This “pil-
ing up” took place in a short range of wavenumbers,
however, because the simulation parameters were set
such thatkβ was close tokR. The spectral steepen-
ing was thought to be a result of the dumb-bell be-
coming a barrier to the energy flux to larger scales.
Chekhlov et al. (1996) investigated a regime with
kβ � kR. They have also observed the energy pil-
ing up in the vicinity ofkβ but they have attributed
this phenomenon to a development of a new regime
of circulation with the steep spectrum (1). Chekhlov
et al. (1996) have emphasized that although the to-
tal upscale energy flux in forced, undamped flows re-
mains constant, the rate of the “energy front” prop-
agation decreases due to the steepening of the zonal
spectrum. The inverse cascade anisotropization com-
bined with the zonal spectrum’s steepening facilitate
the establishment of the zonostrophic regime in flows
with a large-scale drag (Galperin et al. 2006).

Although the frequency resonance constraint im-
pedes the triad interactions in both forced and un-
forced flows, it does not cause the “arrest” of the in-
verse energy cascade which continues to pump en-
ergy to ever larger scales at a constant rateε. The
frequency resonance impediment only facilitates the
funneling of the energy flux into the zonal modes
leading to spectral anisotropization (Chekhlov et al.
1996) and reorganization of the flow field into a
lower-dimensional slow manifold decoupled from the
fast Rossby waves (Smith and Lee 2005). This
manifold manifests itself as a system of quasi-one-
dimensional alternating zonal jets. The threshold of
the spectral anisotropization is characterized by the
wavenumberkβ while the width of the zonal jets
is determined by the large-scale friction (Sukorian-
sky et al. 2002). It is important to emphasize that
forced β-plane turbulence never collapses to a lin-
ear state since the nonlinearity is the very factor that
sustains the slow manifold. It is clear, therefore,
that a β-effect cannot halt the inverse energy cas-
cade (Chekhlov et al. 1996; Sukoriansky et al. 2002;
Galperin et al. 2006).

In the remainder of this section, we shall elabo-
rate various scaling relationships pertinent to forced
anisotropic turbulence with aβ-effect. These rela-
tionships will be used to further elucidate the absence
of the cascade arrest. The flows will be assumed
to contain a stationary random forcing maintaining
an inverse energy cascade at a constant rateε. This
case has most relevance to the real world large-scale
terrestrial and planetary circulations (Galperin et al.
2006). The importance of the parameterε is under-
scored by the conjecture that the diffusion coefficient
of the poleward heat transport strongly depends on
it (Held and Larichev 1996; Held 1999; Lapeyre and
Held 2003).

Two classes of flows will be considered, those with-
out and with the action of the large-scale drag. The
first class is rather unrealistic because, firstly, some
kind of a drag is always present in all real flows,
and, secondly, the large-scale energy condensation
would eventually distort flow configuration in long-
term integrations (Smith and Yakhot 1993, 1994).
Such flows are important, however, for understand-
ing of the dynamics of the transients and mechanisms
that lead to the establishment of observable long-term
patterns. These patterns are represented in the second
class of flows.

Barotropic, small-scale forced, anisotropic 2D turbu-
lence on aβ-plane wherex andy are directed east-
ward and northward, respectively, is described by the
vorticity equation,

∂ζ

∂t
+
∂

(
∇−2ζ, ζ

)

∂(x, y)
+ β

∂

∂x

(
∇−2ζ

)
= D + ξ, (2)

whereζ is the vorticity,ξ is the forcing, andD is the
friction that includes a small-scale and a large-scale
components. In numerical simulations, the small-
scale part ofD is usually represented by a hypervis-
cous term while the large-scale drag is linear. As was
shown by Sukoriansky et al. (1999) and Sukoriansky
et al. (2002), a linear drag, being a physically plausi-
ble mechanism of the large-scale energy damping due
to the bottom friction, is a “soft” process which intro-
duces only a small distortion to the inverse energy
cascade that does not lead to a spurious accumulation
of energy in the lowest resolved modes. The con-
stantβ in (2) is the northward gradient of the Corio-
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lis parameter,f , f = f0 + βy, wheref0 is a refer-
ence value off . The forcingξ, concentrated around
some high wavenumberkξ and assumed to be ran-
dom, zero-mean, Gaussian and white noise in time,
supplies energy to the system at a constant rate. Part
of this energy sustains the inverse cascade with the
rateεwhile the other part is lost on scalesk > kξ due
to the small-scale dissipation.

On its left-hand side, Eq. (2) contains the nonlin-
ear and theβ terms which are dominant in differ-
ent ranges of scales. Here, the balance between
these terms will be analyzed using the notion of the
characteristic time scale rather than the characteris-
tic velocity as in Rhines (1975). The relatively high
wave-number modes are nearly isotropic and obey
the classical KBK theory of 2D turbulence in the en-
ergy range. For those modes, a conventionally de-
fined eddy turnover time,τt(k), is a ratio of the lo-
cal length scale,k−1, and the local velocity scale,
U (k), which can be estimated from the KBK en-
ergy spectrumE(k), U (k) ∝ [kE(k)]1/2, yielding
τt(k) = [k3E(k)]−1/2, where

E(k) = CKε
2/3k−5/3. (3)

Here,CK ' 6 is the Kolmogorov-Kraichnan con-
stant. Equatingτt and the Rossby wave period,
τRW (k) = −k2/βkx, one can find a crossover
wavenumber for theβ-effect induced anisotropy
(Vallis and Maltrud 1993),

kβ ∝ (β3/ε)1/5. (4)

Note that for a stationaryε, kβ is also stationary even
if the flow itself is not in a steady state. Other charac-
teristic wavenumbers for both unsteady and steady-
state flows arekξ andkd, where the latter is associ-
ated with the small-scale dissipation. For steady-state
flows, this group should also include the large-scale
friction wavenumber,kfr.

Simulations by Chekhlov et al. (1996), Smith and
Waleffe (1999) and Huang et al. (2001) of the evolv-
ing turbulence with aβ-effect have shown that as
the energy propagates to wavenumbers smaller than
kβ, the nature of the flow and its spectral character-
istics change markedly. At a wavenumber close to
kβ, the zonal spectrum,EZ(ky), undergoes reorga-
nization and attains a steep distribution (1) while the

Figure 1: Normalized spectral energy transfer,
TE(k|kc)/max|TE(k|kc)|, for kc = 50.

nonzonal, or the residual spectrum largely preserves
the shape given by the KBK law, Eq. (3).

The anisotropization of the inverse cascade has
been demonstrated using the results of direct nu-
merical simulation (DNS) of aβ-plane turbulence
by Chekhlov et al. (1996) who considered the en-
ergy transfer function,TE(k|kc), describing thek-
dependent spectral energy flow from all modes with
k > kc to a given modek, k < kc. The mode
kc is set arbitrarily but such thatkc < kξ. Figure
1 showsTE(k|kc) for a simulation withkc = 50
(which was smaller thankβ = 79). The hole in the
middle of the Fig. 1 indicates that the “energy front”
had not yet reached those wavenumbers. There is a
striking difference between energy transfer to zonal
modeskx → 0 and the rest of the modes. One can
see that most of the energy flux is directed towards
the zonal modes; the trend that dramatically increases
with decreasingk. The spectral energy transfer has
also been calculated by Read and co-workers using
the data from the Grenoble experiment (this issue).
In qualitative similarity to Fig. 1, they obtained an
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anisotropic distribution ofTE(k|kc) peaking at small
ky.

As a result of the spectral anisotropization, the zonal
energy on the large scales exceeds its nonzonal coun-
terpart, and the total energy,Etot(t), can be estimated
based upon the zonal energy spectrum only,

Etot(t) '
U2(t)

2
'

kd∑

km

EZ(ky) ∝ β2k−4
m (t), (5)

whereU (t) is the rms of the zonal velocity, andkm(t)
is the smallest wavenumber with the spectrum (1) at
time t. As follows from (5),

km(t) ∝ [β/2U (t)]1/2 = kR(t), (6)

and so one concludes that in unsteady flows with the
zonal spectrum (1), the Rhines wavenumber,kR, is
time-dependent and provides the location of the mov-
ing “energy front.” Clearly, Eq. (6) does not imply
the arrest of the inverse cascade; in an unbounded
domain, after sufficiently long time,kR can attain an
arbitrarily small value. The unsteady flow under con-
sideration highlights the difference betweenkR and
kβ; not onlykR < kβ (and it may be thatkR � kβ),
but alsokR is time-dependent whilekβ is stationary.

Combining (5) with the linear trendEtot(t) = εt, one
obtains

km(t) ∝ kR(t) ∝ β1/2(εt)−1/4. (7)

A similar estimate of the evolution of the moving
“energy front” for the classical KBK turbulence with
no rotation yields the “−3/2” law (Rose and Sulem
1978),

k0
m(t) ∝ ε−1/2t−3/2. (8)

Comparing the “−1/4” and “−3/2” evolution laws,
Eqs. (7) and (8), respectively, one concludes that
rather thanhalting the inverse cascade, aβ-effect
only slows down the up-scale march of the energy
front. The deceleration of the energy front propaga-
tion is caused by the prolongation of the time stretch
necessary to saturate the zonal modes to their energy
levels specified by the spectrum (1) [instead of (3)]
at the same rate of the energy transfer,ε. As a con-
sequence, numerical simulations on aβ-plane or on
the surface of a rotating sphere require much longer

integration time than similar simulations with no ro-
tation; this tendency is reflected in the “−1/4 law” (7).

When a large-scale drag is present, an ensuing
steady-state flow regime is determined by the ratios
betweenkfr, kβ, kd, andkξ (Galperin et al. 2006).
There exists a certain subspace of these parameters
in which a flow undergoes zonation and develops a
universal stationary regime whose anisotropic spec-
trum in the inertial range (kfr < k < kβ) approaches
a distribution given by Eqs. (1) and (3). The sharp
zonal spectrum is better pronounced forkfr � kβ;
it also extends to the regionk > kβ to its intersec-
tion with the KBK, isotropic, modalk−8/3 spectrum
as explained in Sukoriansky et al. (2002). The pa-
rameter subspace of this regime is delineated by three
conditions: (1) the inertial range is sufficiently large;
(2) the forcing operates on scales not impacted upon
by theβ-effect; and (3) the frictional wavenumber is
large enough [kfr & 4(2π/L), L being the system
size] to avoid the large-scale energy condensation
(Smith and Yakhot 1993, 1994). For convenience,
Galperin et al. (2006) have coined this regime zonos-
trophic. Sukoriansky et al. (2002) have shown that
for this regime, the friction wavenumber,kfr, is the
“final destination” of the moving energy front given
by Eq. (7), and thuskR ∼ kfr. The latter relation-
ship will be confirmed in the next section. Similarly
to the unsteady regime,kR is not a scale of inverse
cascade termination by aβ-effect; the advance of the
energy front can only be stopped by the large-scale
drag. Outside the zonostrophic regime, the flow de-
pends on some additional parameters andkR ceases
to be the “final destination” of the moving energy
front; the latter is still associated withkfr, however.

From the previous studies and the scaling arguments
in this section, we draw two main conclusions: (1) in
unsteady flows, the marching in time of the moving
“energy front” slows down from the “−3/2” to “−1/4”
law upon crossing ofkβ and the front’s location can
be related tokR; (2) in steady flows,kR can be iden-
tified with kfr in the zonostrophic regime. These con-
clusions will be confirmed in numerical simulations
of barotropic 2D turbulence on the surface of a ro-
tating sphere described in the next section. In addi-
tion, using the frequency analysis in Fourier space,
an analysis of the interplay between turbulence and
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Rossby waves will also be presented.

4. Turbulence and Rossby waves:
Results of numerical simula-
tions

This section describes numerical experimentation
with two-dimensional turbulent flows on the surface
of a rotating sphere. The flow is governed by the
barotropic vorticity equation,

∂ζ

∂t
= −J(ψ, ζ + f) + ν∇2pζ − λζ + ξ, (9)

whereζ is the vorticity;ψ is the stream function de-
fined as∇2ψ = ζ; f = 2Ω sin θ is the Coriolis pa-
rameter (or the “planetary vorticity”);Ω is the angu-
lar velocity of the sphere’s rotation;ν is the hyper-
viscosity coefficient;p is the power of the hypervis-
cous operator (p was either 4 or 8 in this study);λ is
the linear friction coefficient, andξ is the small-scale
forcing, respectively. In addition,J(ψ, ζ + f) is the
Jacobian representing the nonlinear term,J(A,B) =
(R2 cos θ)−1(AφBθ −AθBφ), andR is the sphere’s
radius. For convenience, the unit of length is set to
be the radius of the sphere. In these units,R = 1 and
will be omitted in the forthcoming derivations. The
natural time scale isT = Ω−1 such thatΩ = 1. To
explore the explicit dependency onΩ, in some of the
experimentsT was kept fixed whileΩ varied.

On the surface of a unit sphere, the stream function
can be represented via the spherical harmonics de-
composition,

Ψ(µ, φ, t) =
N∑

n=1

n∑

m=−n

ψm
n (t)Y m

n (µ, φ), (10)

whereY m
n (µ, φ) are the spherical harmonics (the as-

sociated Legendre polynomials);µ = sin θ; φ is the
longitude;θ is the latitude;n andm are the total and
zonal wavenumbers, respectively, andN is the total
truncation wavenumber. Conventionally, the indeces
n,m andN are nondimensional. However, when ap-
pear in equations below, thewavenumbers n andm
have the dimension of the inverse length. Since in

our unitsR = 1, we shall not differentiate between
the indeces and wavenumbers.

In the unforced, nondissipative, linear limit, Eq. (9)
gives rise to Rossby waves whose dispersion relation
is

ωm,n = −2β
m

n(n+ 1)
, (11)

whereβ = Ω/R. We shall retainβ in the forthcom-
ing equations in order to preserve the transparency
between the cases of aβ-plane and rotating sphere.

The wavenumbernβ ∝ (β3/ε)1/5 is the analogue
of kβ. In the forced, dissipative regime, the balance
between the small-scale forcing and large-scale dissi-
pation gives rise to a steady state. The kinetic energy
spectrum can be calculated as

E(n) =
n(n + 1)

4

n∑

m=−n

〈|ψm
n |2〉, (12)

where the brackets indicate an ensemble or time av-
erage (Boer 1983; Boer and Shepherd 1983). This
spectrum can be represented as a sum of the zonal and
residual spectra,E(n) = EZ(n)+ER(n), where the
zonal spectrum,EZ(n), corresponds to the addend
with m = 0. In unsteady flows (Huang et al. 2001)
and in the inertial range of the zonostrophic regime
(Sukoriansky et al. 2002; Galperin et al. 2006) these
spectra are similar to those inβ-plane turbulence,

EZ(n) = CZβ
2n−5, CZ ∼ 0.5, (13a)

ER(n) = CKε
2/3n−5/3, CK ∼ 5 to 6. (13b)

The zonal and residual spectra intersect at the transi-
tional wavenumber,

nβ =
(
CZ

CK

)3/10 (
β3

ε

)1/5

' 0.5
(
β3

ε

)1/5

.

(14)

To investigate the energy front propagation in un-
steady flows, a series of long-term simulations was
performed using Eq. (9) decomposed in spheri-
cal harmonics according to Eq. (10). A Gaussian
grid was employed with resolutions of 400×200 and
720×360 nodes and2/3 dealiasing rule (rhomboidal
truncations R133 and R240, respectively). The hy-
perviscosity coefficient,ν, was chosen such as to ef-
fectively suppress the enstrophy range. The Gaussian
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Table 1: Parameters of the four runs shown in Fig. 4.

Experiment Ω ε nβ

1 1 1.44× 10−8 17.6

2 1 2.58× 10−9 24.8

3 2.5 1.42× 10−8 30.6

4 3 1.44× 10−8 34.1

random forcing was distributed amongst all modes
nξ = 83, 84, 85 andnξ = 99, 100, 101 for R133 and
R240, respectively; it had a constant variance and was
uncorrelated in time and between the modes.

The values of the parameters used in unsteady sim-
ulations are summarized in Table 1. In total, four
numerical experiments were performed. AlthoughΩ
and ε varied in a wide range in these experiments,
their values were set such as to ensurenβ < nξ.
For statistical analysis of the results, ensemble av-
eraging over 80 to 110 independent realizations was
employed.

At first, the energy evolution was investigated. It is
well known that without rotation, the total energy of
the flow increases linearly with time,Etot(t) = εt.
We wanted to verify that, firstly, the linear trend is
preserved in the case of nonzero rotation and, sec-
ondly, the zonal and nonzonal total energy compo-
nents,EZ

tot(t) andER
tot(t), respectively, would fol-

low a similar trend [here,Etot(t) = EZ
tot(t) +

ER
tot(t); ER

tot(t) contains both the eddy and wave en-
ergies]. Figure 2 shows the evolution of the total en-
ergy and its components for Experiment 1 in a sim-
ulation of the duration of 10,000 planetary days (for
Experiment 1, 1day =2πT ). Initially, the zonal en-
ergy is very small and the entire energy is mostly con-
centrated in the nonzonal component. That compo-
nent at first grows linearly, then temporarily preserves
an approximately constant value and then returns to
a linear growth while remaining considerably smaller
thanEtot(t). At those later times, the total energy is
mostly contained in the zonal component. Generally,
after initial restructuring, bothEZ

tot(t) andER
tot(t)

grow linearly in time for as long as the flow evolution
remains unobstructed by the action of a large-scale
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Figure 2: Evolution of the total energy,Etot(t) (thick
solid line), and its zonal (dashed line) and non-
zonal (dashed-dotted line) components,EZ

tot(t) and
ER

tot(t), respectively, in Experiment 1. A triangle on
Etot(t) shows the time required for the energy front
to reach the largest scales in the system in the case
whenβ = 0 but ε is the same as in Experiment 1.
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drag or domain boundaries.

We have conducted an additional simulation featur-
ingβ=0 and the sameε as the one used in Experiment
1. The evolution of the total energy in that simulation
was indistinguishable from the case withβ 6= 0. The
only difference was that in the caseβ = 0, the “en-
ergy front” required much shorter time to reach the
largest scales of the system. The total energy at that
moment is marked by a triangle in Fig. 2. Clearly, the
shortening of the evolution time is a result of the fast
front propagation described by Eq. (8). Forβ 6= 0,
the system can accumulate significantly higher en-
ergy; according to Eq. (5), this energy scales with
β2 and is independent ofε. This increased energetic
capacity of the system is a direct result of the spec-
tral anisotropization and steepening of the zonal spec-
trum according to Eq. (1).

The behavior of the total energy components exhib-
ited in Fig. 2 requires some clarification. Further
insight comes from the consideration of the evolution
of the zonal and residual energy spectra for the same
Experiment 1 shown in Fig. 3. Driven by the inverse
cascade, the spectrum expands towards the small
wavenumber end. Until the transitional wavenum-
bernβ is reached, the “energy front”,nm(t), marked
by the black dots in Fig. 3a, can be identified as a
wavenumber with the highest energy. Forn < nm,
the spectral energy density rapidly decreases. As in
classical 2D turbulence, the ensemble-averaged spec-
tra at the wavenumbers swept bynm remain in a
quasi-steady state. The approximate observance of
the classical isotropic KBK distribution (13b) is an
indication that aβ-effect does not yet have a strong
influence on these scales. This behavior changes
whennm becomes smaller thannβ. The spectrum be-
gins to steepen up eventually attaining the level dic-
tated by Eq. (13a). As discussed earlier, the satu-
ration of the spectrum at this level is a slow process
during which the energy transfer continues not only
to the modenm but also to the modes withn < nm.
As a result, along with the slope (13a), the energy
spectrum also forms a plateau forn . nm. Let us
emphasize that the moving “energy front”nm is not
only a transitional wavenumber between the−5 slope
and a plateau but it also corresponds to the number of
the zonal jets (Chekhlov et al. 1996).

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
0

10
1

10
2

10
−8

10
−6

10
−4

 E
R
(n)

n

C
K
ε2/3 n−5/3

n
β

C
Z
β2n−58.9 17.8 

3.6

2.1
1.2

0.5 

a 

b 

 E(n)

n

n
ξ

Figure 3: Total (a) and nonzonal (b) energy spectra
at different times in Experiment 1 of unsteady sim-
ulations (λ=0). The spectra are marked by the to-
tal energy (times105) accumulated in the flow field
from the beginning of simulations. Black dots show
the location of the “energy front”nm. The transition
from the−5/3 to−5 slope aroundnβ is clearly visible
in plate a. Before the transition, the spectral energy
density rapidly decreases forn < nm. After the tran-
sition, the energy accumulates at the modesn < nm

facilitating the emergence of the plateau.
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Figure 4: The moving “energy front,”nm, in un-
steady simulations. The transition from the “−3/2“
to the “−1/4” evolution law in the vicinity of the tran-
sitional wavenumbersnβ located at the intersections
of the respective dashed lines is clearly visible for
all four simulations. The figure demonstrates the ab-
sence of the halting wavenumber for the inverse en-
ergy cascade; the ”energy front“ can penetrate to the
smallest wavenumbers available in the system.

By comparing Figs. 2 and 3 we establish that the
aforementioned change in the behaviors ofEZ

tot(t)
andER

tot(t) is concurrent with the restructuring of the
spectra from isotropic, KBK to strongly anisotropic
distributions upon crossingnβ. Although at large
times,ER

tot is relatively small, the nonzonal modes
play a crucial role in maintaining the zonal flows as
they effectively preserve the upscale energy cascade.

Note that the evolution of the nonzonal spectrum
ER(n) shown in Fig. 3b provides practically no in-
formation on a flow field transformation under the ac-
tion of aβ-effect. Indeed,ER(n) retains an approx-
imate KBK distribution, Eq. (13b), with nearly the
same value of the coefficientCK for bothnβ < nm

and nβ > nm. Only the zonal spectrum,EZ(n),
reflects the anisotropization by attaining a steeper
slope.

For unsteady flows, the linear growth of the total en-
ergy,Etot = εt, yields the following expression for

the Rhines scale:

n−1
R (t) =

(
2U
β

)1/2

'
(

8εt
β2

)1/4

, (15)

which shows thatnR is time-dependent,nR ∝ t−1/4.
If the evolution of the moving “energy front,”nm(t),
is plotted againstnR(t), then one expects to detect
two different power laws for the dependence ofnm

onnR. At the early stages, whilenm(t) > nβ and the
effect of theβ-term is not yet felt,nm would evolve
according to the “−3/2” law, Eq. (8). Upon reach-
ing nβ, as follows from Eqs. (7) and (15),nm and
nR become proportional to each other. As estimated
from the data, the numerical coefficient betweennm

andnR is approximately equal to 1.7. The “−3/2”
and “−1/4” evolution laws and the transition between
them are confirmed in Fig. 4 for the four experiments
summarized in Table 1. The initial evolution is in-
deed according to the “−3/2” law which changes to
the “−1/4” law whennm approachesnβ. Clearly, the
change in the exponent of the evolution law is con-
sistent with the change in the spectral slope shown in
Fig. 3a. The transition between the two regimes is a
complicated and non-universal process further exac-
erbated by the discrete character of the front propaga-
tion. Furthermore, the location ofnm in the transition
area may be somewhat ambiguous as evident from
Fig. 3a. Nevertheless, the transition wavenumbers
are quite close to the values ofnβ in Table 1 for all
four runs. Figure 4 clearly demonstrates the absence
of inverse cascade termination. Although aβ-effect
is strong in the rangenm < nβ, the moving energy
front, nm, always reaches the lowest wavenumbers
available in the system.

Consider now a steady-state flow with a linear large-
scale drag. By its very nature, such a flow is free
of moving fronts; the march of the moving energy
front had been damped by the drag. The final, sta-
tionary destination of the moving front,nm, will now
be identified with the friction wavenumbernfr whose
magnitude depends on the drag coefficient,λ, and,
possibly, also onβ andε such that generally, one can
write nfr = f(λ, β, ε). According to the Bucking-
ham’sΠ-theorem, this system is fully characterized
by two functionally related non-dimensional parame-
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Figure 5: Possible flow regimes in 2D turbulence
with a β-effect in the space of parametersnR and
nβ. The subspace of the friction-dominated regimes
(unfilled squares) occupies the area to the left of the
upper dashed line while the subspace of the zonos-
trophic regime (filled dots ) outlined by the chain in-
equality (17) is confined to the area between the mid-
dle, bottom and vertical dashed lines for the R133
experiments. For higher resolution, the vertical line
moves to larger values ofnβ.

ters, for instance,

nfr

nR
= f

(
nβ

nR

)
. (16)

The functional dependency varies according to a
flow regime. Using an extensive series of long-term
steady-state simulations of 2D turbulence with aβ-
effect, we have derived a detailed classification of
possible regimes in the space of parametersnβ and
nR (Galperin et al. 2006). These regimes are delin-
eated by the dashed lines in Fig. 5. Two of these
regimes, zonostrophic and friction-dominated, are of
particular interest to the present study. The former
is confined to the subspace outlined by the chain in-
equality

nξ & 4nβ & 8nR & 30. (17)

This inequality instructs us that (1) the forcing acts
on scales only weakly impacted by aβ-effect; (2)
there exists a meaningful zonostrophic inertial range
whose width is defined by the rationβ/nR, and (3)
there exists a sufficient number of the lowest modes
to resolve the large-scale friction processes and avoid
the large-scale condensation.

The friction-dominated or, briefly, friction regime oc-
cupies the subspace to the left of the top dashed line
in Fig. 5 and is delineated by the inequality

nβ

nR
. 1.5. (18)

In the friction regime, the zonostrophic inertial range
is practically non-existent; only the classical KBK in-
ertial range may survive forn > nfr.

Let us consider now how Eq. (16) changes in dif-
ferent regimes. In the zonostrophic regime, when
nβ/nR � 1, the dependence on this parameter
ceases (practically, this dependence becomes weak
already atnβ/nR & 2) and one obtainsnfr/nR '
const. Let us calculate the numerical value of the
proportionality constant. Sinceε denotes the net
part of the energy input that goes to the inverse cas-
cade, the spectrally-integrated energy balance equa-
tion reads

Etot =
ε

2λ
. (19)

Using this relationship, we obtain the Rhines
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in the energy spectrum, vs. the Rhines scale,nR,
in simulations of the zonostrophic (filled dots) and
marginally-zonostrophic (empty dots) regimes with a
linear large-scale drag.

wavenumber in the form

nR =
(
λβ2

4ε

)1/4

. (20)

On the other hand, since the energy spectrum is com-
prised of a plateau forn < nfr and the inertial
part well approximated by Eq. (13a) forn > nfr,
the total kinetic energy can be calculated by inte-
grating this composite spectrum with respect ton.
The integration yields an approximate relationship,
Etot ' (5/4)CZ(Ω/R)2n−4

fr (Galperin et al. 2001).
Using this expression and Eq. (20), one can relatenfr

to nR,

nfr = (10CZ)1/4

(
λβ2

4ε

)1/4

' 1.5nR. (21)

The coefficient5/4 in the expression forEtot above
was stipulated by the assumption that the energy
spectrum atn < nfr is flat. This assumption is only
an approximation; in real flows, this coefficient may
need to be adjusted.

Equation (21) was verified in a series of simula-
tions of the zonostrophic (filled dots in Fig. 5) and
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Figure 7: The correlation between the actual and the-
oretical values ofnfr in simulations of the large-scale
drag dominated 2D turbulence with aβ-effect.

marginally-zonostrophic (unfield triangles adjacent
to the zonostrophic region) regimes with widely vary-
ing values ofλ (5 × 10−4 ≤ λ ≤ 2.5 × 10−3), ε
(3.3×10−9 ≤ ε ≤ 9×10−8), andΩ (0.3 ≤ Ω ≤ 2).
Note that due to the steep zonal spectrum, zonos-
trophic flows have low variability and require long-
term integrations to assemble records sufficient for
statistical analysis. Galperin and Sukoriansky (2005)
have estimated that a record length of up to 100τ
after attaining the steady state,τ = (2λ)−1 being
the time scale associated with the large-scale drag,
would be adequate for the spectral analysis. Accord-
ingly, our steady-state simulations were of duration
of about 60 to 100τ . The results of these simula-
tions are summarized in Fig. 6. Note that the value
of the coefficient in the correlation betweennfr and
nR in Eq. (21) had to be adjusted to 1.2. As one can
see, the linear relationship betweennR andnfr holds
faithfully. One concludes, therefore, that, firstly, sim-
ilarly to the unsteady case, aβ-effect does not halt the
inverse energy cascade which is now damped by fric-
tion, and, secondly, in the zonostrophic regime, the
Rhines scale is, in fact, a scale that characterizes the
effect of the large-scale drag.

In the friction regime, the drag may be so strong that
its impact extends to the scales where the flow is un-
affected byβ (this aspect was considered by Danilov
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and Gurarie (2002); Smith et al. (2002); James and
Gray (1986)). The functional relationship between
nfr/nR andnβ/nR can then be established using the
assumption that the energy spectrum is isotropic and
described by the KBK distribution, Eq. (3). The total
kinetic energy in this case is given by the expression
Etot ' 3

2CKε
2/3n

−2/3
fr , wherenfr is the wavenum-

ber with the maximum energy. Using the energy bal-
ance equation, Eq. (19), we obtain

nfr = (3CK)3/2(λ3/ε)1/2. (22)

Using Eq. (22) and the definitions ofnβ, Eq. (14),
andnR, Eq. (20), we further find

nfr = (12CZ)3/2

(
nR

nβ

)5

nR

' 14.7
(
nR

nβ

)5

nR. (23)

This relationship is very different from the one de-
rived for the zonostrophic regime, Eq. (21), because
now nfr depends onε and is independent ofβ such
that the proportionality betweennfr andnR is lost.
Summarizing, we note that the dependence ofnfr on
nR given by Eq. (16) has two limiting cases pertain-
ing to the zonostrophic and friction regimes. In the
former,nfr andnR are related linearly and are gener-
ally quite close while in the latter they diverge from
each other by a stiff power law. In the intermedi-
ate cases, the relationship betweennfr onnR can be
expected to be nonlinear and complicated which ex-
plains why the scaling of the zonal jets’ width with
n−1

R has been so evasive in diverse flows.

Equation (23) has been validated in numerical sim-
ulations with large values of the drag coefficient,λ,
which was chosen such thatnβ/nR . 1.5. These
simulations are shown as unfilled squares in Fig. 5.
Figure 7 shows a good agreement between the actual
values ofnfr and those calculated from Eq. (23) with
the coefficient adjusted to 10.

There still remains a question about the proper scal-
ing of the width of the zonal jets which in some stud-
ies was found to be close ton−1

R . Note that the scaling
of the jets’ width only makes sense when the jets have
approximately homogeneous spatial distribution and
their width can be estimated from the number of the
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Figure 8: The correlation between the number of the
zonal jets,njet, estimated from the velocity profile in
the physical space, andnR obtained from numerical
simulations of the zonostrophic regime.

jets,njet. It is of interest, therefore, to comparenjet

with nfr andnR.

Figure 8, derived from simulations of the zonos-
trophic regime, indicates thatnjet ' nR. The spread
of the data points is caused by the discreteness ofnjet.
In the range4 ≤ njet ≤ 10, for example, unavoidable
unity deviations appear like a 10-25% noise. In fact,
given this uncertainty,nR provides a faithful estima-
tion of the number of the zonal jets. Using the corre-
lation betweennfr andnR shown in Fig. 6, one con-
cludes that bothn−1

fr andn−1
R are appropriate scal-

ing parameters for the jets’ width in the zonostrophic
regime. We have also attempted to scalenjet with nR

calculated using the nonzonal velocities only. In that
case, the correlation betweennjet andnR was con-
siderably worse than that in Fig. 8 and, therefore, it
is not shown here.

We now want to analyze the interplay between tur-
bulence and Rossby waves in order to determine
whethernR (or nβ) separate turbulence and Rossby
wave regions or turbulence and waves coexist in some
range of scales. To answer this question, it is instruc-
tive to analyze the Fourier-transform of the two-time
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Figure 9: The velocity autocorrelation function,
U (ω,m, n)× 107, for the friction dominated regime;
nR ' 9, nβ ' 12. The triangles correspond to the
linear dispersion relation (11).

velocity autocorrelation function given by

U (ω,m, n) =
n(n+ 1)

4
〈|ψm

n (ω)|2〉, (24)

whereψm
n (ω) is a time Fourier transformed spectral

coefficientψm
n (t) defined in Eq. (10). In 2D turbu-

lence without Rossby waves,U (ω,m, n) would be
expected to have a symmetric bell shape around the
zero frequency. When the waves are present, they
causeU (ω,m, n) to develop spikes at frequencies
corresponding to the dispersion relation. The corre-
lation functionU (ω,m, n) is therefore a convenient
tool to establish and/or diagnose the dispersion rela-
tions in data. A similar approach based upon the anal-
ysis of the autocorrelation function of the sea surface
elevation obtained from the satellite altimetry has
been used by other researchers (see, e.g., Glazman
and Cheng (1999); Glazman and Weichman (2005))
to diagnose the baroclinic Rossby waves in the ocean.
The results of our analysis are shown in Figs. 9
and 10 for the friction dominated and zonostrophic
regimes, respectively. In the former case, for small
wavenumbers, Rossby waves produce sharp spikes
almost exactly corresponding to the linear dispersion
relation (11). Similar spikes also appear at higher
wavenumbers although they are not as sharp because
they are progressively broadened by turbulence. As

evident from Fig. 9, Rossby waves are present atn
far exceeding bothnR andnβ indicating that there is
no separation between Rossby waves and turbulence;
both processes coexist on virtually all scales. Figure
10 depicts a more complicated wave-turbulence in-
teraction. As in Fig. 9, the spectral spikes at small
n are sharp but now they begin to show signs of a
strong wave-turbulence interaction. At largern, due
to a stronger turbulence, the spikes broaden and be-
come displaced from the values stipulated by the lin-
ear dispersion relationship. This behavior is indica-
tive of a complex nature of turbulence - wave inter-
action in the case of the zonostrophic regime which
may manifest itself in the development of the Rossby
wave frequency shift or in the appearance of non-
linear waves different from Rossby waves. Simi-
larly to Fig. 9, Rossby waves and turbulence coexist
for wavenumbers exceeding bothnR andnβ. Note
that the wave-turbulence interaction is stronger and
more subtle in the zonostrophic than in the friction-
dominated regime; a more detailed investigation of
this interaction will be given elsewhere. An important
result from this study is that there exist neither a sharp
transition between linear and nonlinear regimes nor
a distinct boundary between turbulence and Rossby
wave spectral ranges. This result reinforces our ear-
lier conclusion that neithernβ nornR can be associ-
ated with the turbulence - Rossby wave transition.

5. Discussion and conclusions

One of the main results of the presented here theo-
retical analysis and numerical simulations is the con-
clusion that a non-dissipative extra-strain in the vor-
ticity equation, aβ-term, can cause no arrest of the
inverse energy cascade in 2D turbulence. The effect
of theβ-term on energy transfer manifests in cascade
anisotropization and formation of quasi-1D struc-
tures, zonal jets. This result can be likened to that
in 3D flows with pure rotation where non-dissipative
extra-strains are brought about by the Coriolis force.
Again, turbulent cascade in this case is not arrested
but anisotropized leading to self-organization of the
flow field into quasi-2D, large-scale columnar vor-
tices aligned with the rotation axis (Smith and Lee
2005). Even in the case when extra-strains do enter
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Figure 10: The velocity autocorrelation function,
U (ω,m, n), for the zonostrophic regime;nR ' 5,
nβ ' 14. The scaling coefficients forU are105 for
n = 5 and 10 and108 for n = 20 and 40. The trian-
gles correspond to the linear dispersion relation (11).

the kinetic energy equation as sink terms, they can-
not totally suppress turbulent cascade. For example,
in the case of 3D flows with stable stratification, there
also exists strong anisotropization. Along the direc-
tion of the extra-force (i.e., the gravity), turbulent ex-
change diminishes, but in the normal planes, turbu-
lence is not suppressed and may even be enhanced
(Sukoriansky et al. 2005; Smith and Waleffe 2002).
In all these cases, the extra-strains support various
types of linear waves which can coexist with turbu-
lence in wide ranges of scales.

Our simulations revealed neither a separation be-
tween the regions of turbulence and wave domina-
tion nor a large-scale threshold of the Rossby wave
propagation. The opposite is true; similarly to the
internal and inertial waves, Rossby waves can coex-
ist with turbulence in a wide range of scales. Rather
than being a scale of the cascade arrest, the Rhines
scale may characterize many different phenomena. In
the present study, this conclusion is illustrated by two
examples. In unsteady flows,LR appears as a scale
of the largest energy containing structures, while in
a steady state zonostrophic regime, the Rhines scale
coincides with the scale of the large-scale friction.
Furthermore, it is shown that the relationship between

the Rhines and friction scales is not universal and de-
pends on the flow regime. It is not surprising, there-
fore, thatLR has been used as a scaling parame-
ter characterizing various aspects of flows with aβ-
effect. As an example, one may recall that the scaling
withLR has been applied both to the equatorial (Hide
1966) and off-equatorial (Williams 1978) Jovian jets
although their widths are quite different. Generally,
the Rhines scale is a basic dimensional parameter in
flows where aβ-effect is a salient feature not nec-
essarily related to geostrophic turbulence (see, e.g.,
Pedlosky (1998); Nof et al. (2004)). It is important,
therefore, to understand what processes are charac-
terized byLR and determine an appropriate veloc-
ity scaleU . In situations where the spectrum is un-
known and the flow is affected by multiple factors,
the identification of the dominant processes and the
correct choice ofU are essential (see, e.g., Barry et al.
(2002)).

As was shown in section 4, a nondimensional pa-
rameterRβ = nβ/nR plays a key role in quasi-2D,
steady state turbulent flows with aβ-effect. By virtue
of determining the type of a flow regime, this pa-
rameter reveals an important information on various
aspects of large-scale circulations. RecastingRβ in
terms of the basic flow parameters, we obtain

Rβ = 21/2

(
CZ

CK

)3/10 (
βU5

ε2

)1/10

' 0.7
(
βU5

ε2

)1/10

. (25)

This number can also be defined in terms of the ex-
ternal flow parameters,λ, β andε,

Rβ = 21/2

(
CZ

CK

)3/10 (
β2ε

λ5

)1/20

' 0.7
(
β2ε

λ5

)1/20

. (26)

The zonostrophic regime is characterized byRβ > 2
(in addition to the smallness of the Burger number,
Bu; see e.g. Galperin et al. (2006)) while for the
friction-dominated regime,Rβ . 1.5. The range
1.5 . Rβ . 2 corresponds to a transitional regime
whose properties are not universal. It is instructive to
calculate the values ofRβ for different environments.
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To illustrate the significance ofRβ, we shall consider
a wide variety of environments with smallBu rang-
ing from the small-scale turntable used in the Greno-
ble experiment (Read et al. 2004) (see also Read et
al., this issue) and to the terrestrial oceans to the solar
giant planets’ weather layers.

For the Grenoble experiment, using the parameters
reported in Read et al. (this issue), one obtainsRβ ∈
(0.5, 2.3), i.e., the experimental flow was marginally
zonostrophic. It is not surprising, therefore, that the
flow field obtained in some experiments exhibited
zonation, spectral anisotropization, and build up of
the zonal spectrum described by Eq. (13a).

For the oceanic flows, the magnitude ofε can be es-
timated between10−9 and 10−11 m2 s−3, the lat-
ter value follows, for example, from the realistic,
eddy resolving simulations by Nakano and Hasumi
(2005). With such values ofε and U of the or-
der of 10 cm s−1, one finds thatRβ ∈ (1, 2.8).
Similarly to the Grenoble experiment, the oceanic
flows are on the verge between the zonostrophic and
friction-dominated regimes. Visually, oceanic flows
are quite erratic as would be expected in the transi-
tional regime. However, averaging in time reveals
zonation (see, e.g., Maximenko et al. (2005); Ol-
litrault et al. (2006)) and spectral anisotropization
(Zang and Wunsch 2001) suggesting thatRβ is rather
close to 2. In addition, some numerical models
show the build up of the zonal spectrum according
to Eq. (13a) (Galperin et al. 2004). Even though the
zonostrophic inertial range in the ocean is small and
the barotropic currents are relatively weak, by virtue
of the zonation that penetrates through considerable
depth these currents can still play an important role
in the dynamic and transport processes. Studies of
these processes are now becoming an area of an ac-
tive research (see, e.g., Galperin et al. (2004); Smith
(2005); Richards et al. (2006); Ollitrault et al. (2006);
Nadiga (2006)).

For the solar giant planets,ε can be estimated at10−8

m2 s−3 (Galperin et al. 2006) yieldingRβ ∼ 10, 25,
30 and 40 for Jupiter, Saturn, Uranus and Neptune,
respectively. The large values ofRβ on all four solar
giant planets indicate that their atmospheric circula-
tions feature well established zonostrophic regimes.
Indeed, the energy spectra of the zonal flows on these

planets are consistent with Eq, (13a) in both the slope
and the magnitude (Galperin et al. 2001; Sukoriansky
et al. 2002).

An interesting implication can be drawn regarding the
“barotropic governor” (James and Gray 1986; James
1987) the essence of which is the reduction of the
potential-kinetic energy conversion rate of the baro-
clinic instability due to the increase of the horizontal
barotropic shear resulting from the inverse cascade in
the barotropic mode. In light of the present results,
it is tempting to think of the barotropic mode as a
governor in a rather broader sense than just a regu-
lator of the baroclinic instability. In the case of the
zonostrophic regime with a profound inertial range
(or largeRβ), the barotropic mode contains most of
the kinetic energy and hence truly governs the large-
scale circulation and its energetics. As shown in
Sukoriansky et al. (2002), the total kinetic energy of
a circulation in this regime is determined byΩ,R and
nfr only and is independent of the external forcing or
the energy conversion rate unless these dependencies
are implicitly embedded in the friction wavenumber
nfr the physical mechanism of which is not always
well understood and is a subject of an ongoing re-
search (see, e.g., Müller et al. (2005)).
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