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Abstract guency domain demonstrates that Rossby waves co-
exist with turbulence on all scales including those
much smaller thaik.  thus indicating that the Rhines

We revise the notion of the cascade “arrest” if-2 gcaje cannot be viewed as a crossover between turbu-
plane turbulence in the context of continuously forced,ce and Rossby wave ranges.

flows using both theoretical analysis and numerical

simulations. We demonstrate that the upscale en-

ergy propagation cannot be stopped hy-affect and

can only be absorbed by friction. A fundamenta] | ntroduction

dimensional parameter in flows with @&effect, the

Rhines scaleL g, has traditionally been associated

with the cascade “arrest” or with the scale separdferrestrial and planetary circulations are described

ing turbulence and Rossby wave dominated spectbgl nonlinear equations that support various types of

ranges. We show that rather than being a measwaves in the linear limit. The real flows exhibit a

of the inverse cascade arredty is a characteris- complicated interplay between turbulence and waves.

tic of different processes in different flow regimeswhile in a certain range of scales, turbulent scram-

In unsteady flows,Lp can be identified with the bling may overwhelm the wave behavior and lead

moving “energy front” propagating towards the deto the disappearance of the dispersion relation (such

creasing wavenumbers. When large-scale enemgyin the small-scale range of stably stratified flows;

sink is presents-plane turbulence may attain sevsee e.g., Sukoriansky et al. (2005)), on other scales,

eral steady-state regimes. Two of these regimes #re wave terms cause turbulence anisotropization and

highlighted, friction-dominated and zonostrophic. llemergence of systems with strong wave-turbulence

the former, Lz does not have any particular signifiinteraction. Systems that combine anisotropic turbu-

cance, while in the latter, the Rhines scale nearly dence and waves exhibit behavior very different from

incides with the characteristic length associated withat of the classical isotropic and homogeneous tur-

the large-scale friction. Spectral analysis in the frébulence (Mcintyre 2001). In the context of large-

scale atmospheric flows, the interaction between tur-

*semion@bgu.ac.il bulence and waves yields dynamically rich macro-




turbulence (Held 1999; Schneider 2006), the noticzascade by the Rossby wave propagation which, thus,
that underlies diverse phenomena ranging from a Ibecomes another focal point of this study. Both issues
cal weather to a global climate. The subtlety of thiwill be addressed theoretically; the theoretical results
interaction is further highlighted by the fact that dugvill be substantiated in numerical simulations.

to the planetary rotation and Taylor-Proudman theo- _ ) _ ) )
rem, large-scale flows are quasi-two-dimensionaliz&€ Paper is organized in the following fashion. The

and may be conducive to the development of the iREXt Section presents the basics of the theory of two-
verse energy cascade (Read 2005). One of the par&iensional (2D) turbulence with a-effect and ac-

eters that characterize macroturbulence is the Rhifg§1tuates its problematics. Section 3 presents analy-
wavenumberkr = (3/2U)'/2, or the Rhines scale, SIS of the interaction between inverse energy cascade
Lg ~ k5", whereU is the r.m.s. fluid velocity and of 2D turbulence and Rossby waves and discusses the

3 is the northward gradient of the Coriolis parametd}otion of the cascade “arrest.” Section 4 elaborates
(Rhines 1975) (in the original paper, this wavenunihis analyss and cl_ar|f|e§ the meaning of the R_hmes
ber was denoted bys; here, kg is used instead, asScale using numerical simulations _of barotropic 2D
the notationk is reserved for another wavenumbeitrbulence on the surface of a rotating sphere. In ad-
to appear later). At this scale, the inverse casca@ifion. that section describes the hierarchy of scaling
supposedly becomes arrested, and the nonlinear Rffameters and corresponding flow regimes as well as
bulent behavior is replaced by excitation of linedf'® interaction between turbulence and Rossby waves
Rossby waves. This scale has also been associdedifferent regimes. Finally, section 5 presents dis-
with flow reorganization into the bands of alternatin§tSSion and some conclusions.

zonal jets, the process known as zonation, and the

width of the jets has often been scaled with'. The
Rhines scale plays a prominent role in many theori }

of large-scale atmospheric and oceanic circulatiz Turbulence and ROSSby waves.
(see, e.g., James and Gray (1986); Vallis and Mal- The basics

trud (1993); Held and Larichev (1996); Held (1999);

Lapeyre and Held (2003); Schneider (2004); LaCasce

and Pedlosky (2004); Vallis (2006)) as well as in theLhe interaction between 2D turbulence and Rossby
ories of planetary circulations (see, e.g., the review B§aves has been considered in the pioneering study
Vasavada and Showman (2005)) and, possibly, eydhRhines (1975). Starting with the barotropic vortic-

stellar convection (see, e.g., Miesch (2003)). ity equation on &3-plane, he concentrated on mainly
unforced barotropic flows caused by initially closely

The meaning of the Rhines scale is not always clepacked fields of eddies spreading from a state with a
however. Even in the barotropic case, differemtfunction like spectrum peaked at some wavenum-
regimes would arise for continuously forced and déer k. Among the major conclusions of the paper,
caying flows, for flows with and without friction, andthe following have the most relevance to the present
for flows in bounded and unbounded domains. Asudy:

a result, the Rhines scale may be time-dependent,

stationary or entirely obscured by friction. In many
studies, the scaling Wil‘lmg1 is implied but the coeffi-
cient of proportionality varies in a wide range. There
also exists a multitude of other scaling parameters
that characterize various aspects of the flow and flow
regimes. Itis important, therefore, to understand the
hierarchy of these parameters and the plackgoin

this hierarchy. This is precisely the goal of the present ) i )
study. This goal cannot be achieved without clarifica{2) the expansion of the flow field tbr triggers

tion of the notion of the “arrest” of the inverse energy wave propagation and slowing down, or the “ar-
rest” of the cascade to smaller wavenumbers;

(1) at the wavenumber, denoted &g, at which

the root-mean-square velocity is equal to the
phase speed of Rossby waves with an average
orientation,c, = (3/2k?, there exists a subdivi-
sion of the spectrum on turbulende ¢ kr) and
wave & < kr) modes;



(3) triad interactions of the modes with wavenumk; o (5°/€)/° (the proportionality coefficient will
bers close t&g require simultaneous resonancee established later) and the angular distribution re-
in wavenumbers and frequencies; sembling a dumb-bell (Vallis and Maltrud 1993; Hol-

o _ loway 1986; Vallis 2006). The introduction dfs

(4) on the average, triad |nteract|0ns_ transfer enertlces a slew of new questions. If there is an “arrest”
to modes with smaller frequencies and smallgr 16 forced flows, which one of the two wavenum-
wavenumbers causing the anisotropization @fyg .. and ks, should be associated with the “ar-
the flow field. As a result, the energy accumyzpqp» gcale? At which scale the anticipated in item
lates in modes with small north-south wavenunmyy passhy wave excitation is triggered? Can Rossby
bers that correspond to east-west currents, zoyales coexist with turbulence on scales intermediate
jets, giving rise to the process of zonation; betweenk;* andk;'? With regard to item (5) one

may ask which one of these two wavenumbers should

be used as a scaling parameter for the width of the

(6) in a steadily forced flow, the spectrum is exzonal jets? Indeed, although the mechanism of zona-
pected to develop a sharp peakatand rapidly tion has by now been solidly established, the scaling
decrease fok > kg. of the jets’ width with the Rhines scale has not been

conclusive as the coefficient of proportionality has so

The items (3) and (4) have been confirmed in nd@" been glusive;lFor instance, Hide (1966) used a
merous theoretical, numerical and experimental st g£l€ Similar toky - for the width of the equatorial
ies (see, e.g., Wiliams (1975, 1978): Hollowai)ets on Jupiter and Saturn while Williams (1978) and
and Hendershott (1977); Panetta (1993); Vallis aftiners applied it o the off-equatorial jets. Conclu-
Maltrud (1993); Chekhlov et al. (1996); Cho and'V® scaling withky © has materialized neither in the
Polvani (1996); Nozawa and Yoden (1997); Huang.renoble experiment (Read et al. 2004) nor in the
and Robinson (1998): Huang et al. (2001); Read et c€nt analysis of the eddy-resolving simulations of
(2004); Vasavada and Showman (2005); Galperffeanic jets by Richards etal. (2006).

et al. (2006)). A new light on z_onati_on WaS_Sh_ed_béhekhlov et al. (1996) have scrutinized the notion
Balk (2005)_. Exploring a new invariant for inviscid ¢ ihe “arrest” of the inverse energy cascade and as-
2D flows with Rossby waves (Balk 1991; Balk angerted that Rossby wave excitation cannot halt the
van Heerden 2006), he showed that the trans_fer of @cade in principle. On the other hand, they have
ergy from small to large scalgs ta_\kes place in such grirmed that the3-term in the vorticity equation
way that most of the energy is dl_rected_to the Zonﬁ'hpedes triad interactions hence reducing the effec-
jets. The rest of the aforemen_tloned issues, NOWGeness of nonlinear transfers and increasing their
ever, remain controver3|a_l, p_artlcularly When coMkparacteristic time scale. Furthermore, Chekhlov
pounded with other complicating factors such as thg ;| (1996), Smith and Waleffe (1999) and Huang
friction, continuous forcing, effects of the boundy; 4 (2001) have shown that the spectrum of a
aries, effects of str_at|_f|cat|on, et_c. L_Et us COns'deﬁ)rcedﬁ-plane turbulence is strongly anisotropic. On
fqr _example, a realistic system in which the bqttor?&rge scales, the spectrum of the zonal modes is pro-
friction acts like a large-scale drag. One can 'ntr(f)'ortional to 82k, It is important to understand
duce a wavenumber as_somated with th"?‘t driag, _the synergy between the slowing-up of the nonlin-
as a wavenumber at which the characteristic frictiQql, . if+aractions and spectrum steepening. The re-
time IS _equal to that of the flow. ks > kg then duction in the effectiveness of the triad interactions
the frictional processes would forestall the arrest and § o to the requirement of the simultaneous reso-
the Rhines scal.e Wou_ld require mod_|f|cat|on. (‘]amﬁ%mce in wavenumbers and frequencies (Rhines 1975,
and Gray 1986 Danllov_ and G%”a“e 2002; SmmﬂQ?Q; Holloway and Hendershott 1977; Carnevale
et a_l. 2002). In flows W'_t_h (_:OHt'nUOUS Sm‘3‘”'5(:"’“(31nd Martin 1982). The ensuing cascade anisotropiza-
forcing at a rater, the equilibrium between the eddy;q, ¢ jlitates strong energy flux to the zonal modes

turnover time and the Rossby wave period selects &E'nines 1975 Vallis and Maltrud 1993: Chekhlov
anisotropic transition wavenumber with an amplitude ' '

(5) the width of the zonal jets scales witly ';



et al. 1996). Due to the frequency resonance impedensidering a space of parameters that characterize
iment, however, the zonal modes cannot effectivetlifferent regimes in barotropic, forced and dissipative
transfer their energy to other modes. Since the t@-plane turbulence, Galperin et al. (2006) have found
tal energy flux must be conserved, the spectral @hat in a certain subspace, a flow attains a universal
ergy density of the zonal modes has to increase. Tiegime with the zonal spectrum (1) adg; ~ 0.5.
steepening of the zonal spectrum eventually reachdsis subspace is wide enough to include important
the 6214;5 distribution at which the frequency resodaboratory, terrestrial and planetary flows (Galperin
nance condition is relaxed and the zonal modes cainal. 2006).

again efficiently exchange energy with other modes. ) _

This exchange allows for the zonal modes to dispoS&SPite the progress made in understanding of var-
of the energy excessive, on the average, 0@.@5 ious aspects of @-plane tur_bulence, t_here still re-
level and maintain a steady and statistically stabfe@ins a great deal of confusion regarding the “arrest”
flow regime (Huang et al. 2001). Tlﬁa?kf spec- of the inverse energy cascade and the Rhines scale.
trum is somewhat reminiscent of the isotropi6 dis- 1 "€ fact that the interplay between turbulence and
tribution discussed by Rhines (1975). He has put tf9SSPy waves has never been thoroughly investigated
existence of such a sharp slope in doubt, howev@ﬂly adds to t_h|s confusion. The next section gathe_zrs
because it would imply a strong dependence on tfgMe theoretical arguments that may help to clarify
smallest wavenumbers with the highest energy levdtS perplexity. In section 4 these arguments will be
which would lead to a strong nonlocality negating theuPstantiated via numerical experimentation.
dimensional arguments that facilitated th&k —°> de-

pendence in the first place. Sukoriansky et al. (2002)

have elucidated that in the case of an anisotropi

spectrum, the arguments of nonlocality may not gg: |sthe cascade rea“y arrested?
applicable hence one could expect that a flow regime

with a steefronal spectrum, The cascade “arrest” is often understood as a transi-

tion of a flow character from strongly nonlinear and
Ez(k,) = 0252/4;5, (1) turbulent to vyeakly nonlin_ear an_d V\ﬁave-domina}:[e_d

under the action of a nondissipative “extra-strain” in

the Bradshaw (1973) terminology, @&effect. This
may be established (her€y is anO(1) coefficient). transition presumably takes place at a scbgel.
The stability of such a regime is stipulated by th8uch an interpretation applies to unforced flows con-
Rayleigh-Kuo criterion (Chekhlov et al. 1996; Huangidered by Rhines (1979) in great detail (see also Ma-
et al. 2001; McWilliams 2006). Furthermore, simjda and Wang (2006), chapters 10-13). Rhines (1979)
ilarly to Lilly (1972) in the case of isotropic, non-showed that in unforced flows, both the nonlinear
rotating flows, Sukoriansky et al. (2002) have argugdrm and a rate of the energy transfer to large scales
that only the large-scale drag can balance the invedecrease with time. This tendency can be traced to
cascade and facilitate the establishment of a steatlg impediment to triad interactions caused by the
state in flows with g5-effect. They have reproducedrequency resonance condition discussed in the previ-
the spectrum (1) in forced, dissipative simulations @us section. A “soft” transition from a strongly non-
2D barotropic turbulence with a linear drag on thknear to a weakly nonlinear regime takes place at the
surface of a rotating sphere and showed that in suctossover wavenumbekg (Rhines 1979). This in-
flows, kg is close tokg,. They have also found anterpretation of the cascade “arrest” is sometimes ap-
evidence of the spectrum (1) on all four Solar giarglied to forced flows (James and Gray 1986). The ex-
planets. Later, using the eddy-resolving simulatiorsnsion of the results valid for the unforced dynamics
by Nakano and Hasumi (2005) of the North Pacifi¢z=0) to flows with continuous forcinge(# 0) may
ocean, Galperin et al. (2004) have shown that thHie problematic however. Already at the level of the
spectrum may also be present in the barotropic modienensional analysis, the presence of the non-zero
of the subsurface oceanic alternating zonal jets. ¢ and appearance of the non-trivial wavenumber



point to significant differences between the two casda. the remainder of this section, we shall elabo-
Vallis and Maltrud (1993) have first recognized theate various scaling relationships pertinent to forced
importance of the transitional wavenumbég. In anisotropic turbulence with @-effect. These rela-
their forced - dissipative simulations, Vallis and Maltionships will be used to further elucidate the absence
trud (1993) observed a “piling up” of the computedf the cascade arrest. The flows will be assumed
energy spectrum in the vicinity ofz. This “pil- to contain a stationary random forcing maintaining
ing up” took place in a short range of wavenumberan inverse energy cascade at a constanteatehis
however, because the simulation parameters weresate has most relevance to the real world large-scale
such thatks was close tdigr. The spectral steepen+errestrial and planetary circulations (Galperin et al.
ing was thought to be a result of the dumb-bell b&006). The importance of the parametes under-
coming a barrier to the energy flux to larger scalescored by the conjecture that the diffusion coefficient
Chekhlov et al. (1996) investigated a regime withf the poleward heat transport strongly depends on
kg > kr. They have also observed the energy pilt (Held and Larichev 1996; Held 1999; Lapeyre and
ing up in the vicinity of kg but they have attributed Held 2003).

this phenomenon to a development of a new regime ) ) )

of circulation with the steep spectrum (1). ChekhloJWo classes of flows will be considered, those with-
et al. (1996) have emphasized that although the R)ut and Wlfch the action of_th_e Iarge-scale_drag. The
tal upscale energy flux in forced, undamped flows rg_[st class is rather unrealistic beca_\use, firstly, some
mains constant, the rate of the “energy front” proﬂ‘-‘nd of a drag is always present in all real flows_,
agation decreases due to the steepening of the zdH¥l» secondly, the large-scale energy condensation
spectrum. The inverse cascade anisotropization coffpuld eventually distort flow configuration in long-
bined with the zonal spectrum’s steepening facilitaf§™m integrations (Smith and Yakhot 1993, 1994).

the establishment of the zonostrophic regime in flow!ch flows are important, however, for understand-
with a large-scale drag (Galperin et al. 20086). ing of the dynamics of the transients and mechanisms

that lead to the establishment of observable long-term
Although the frequency resonance constraint inpatterns. These patterns are represented in the second
pedes the triad interactions in both forced and unlass of flows.
forced flows, it does not cause the “arrest” of the in- ) ) )
verse energy cascade which continues to pump &qrotropic, small-scale forced, amsotr_oplc 2D turbu-
ergy to ever larger scales at a constant rateThe |€nce on gj-plane wherer andy are directed east-
frequency resonance impediment only facilitates ti{¢ard and northward, respectively, is described by the

funneling of the energy flux into the zonal mode¥Prticity equation,

leading to spectral anisotropization (Chekhlov et al. L,

1996) and reorganization of the flow field into a %< 9(V26.¢) +5£ (V73)=D+¢ (2
lower-dimensional slow manifold decoupled from the 9t I(z,y) Oz ’

fast Rossby waves (Smith and Lee 2005). This _ L ) _
manifold manifests itself as a system of quasi-on@’-here( is the vorticity,¢ is the forcing, andD is the

dimensional alternating zonal jets. The threshold fjction that includes a small-scale and a large-scale

the spectral anisotropization is characterized by tf@mponents. I numerical simulations, the small-

wavenumberkg while the width of the zonal jets scale part o) is usually represented by a hypervis-

is determined by the large-scale friction (Sukoriarz0Us term while _the large-scale drag is linear. As was
sky et al. 2002). It is important to emphasize thown by Sukoriansky et al. (1999) and Sukoriansky

forced g-plane turbulence never collapses to a lifgt al- (2002), a linear drag, being a physically plausi-

ear state since the nonlinearity is the very factor thilfe mechanism of the large-scale energy damping due

sustains the slow manifold. It is cleatr, therefor(I)o the bottom friction, is a “soft” process which intro-

that a G-effect cannot halt the inverse energy Cag[uces only a small distortion to the inverse energy

cade (Chekhlov et al. 1996; Sukoriansky et al. sppgascade that does not lead to a spurious accumulation
Galperin et al. 2006). ' of energy in the lowest resolved modes. The con-

stants in (2) is the northward gradient of the Corio-



lis parameterf, f = fo + By, wheref, is a refer-
ence value off. The forcing¢, concentrated around
some high wavenumbet, and assumed to be ran-
dom, zero-mean, Gaussian and white noise in time,
supplies energy to the system at a constant rate. Part case 3 DNS
of this energy sustains the inverse cascade with the
ratee while the other part is lost on scalés> k¢ due

to the small-scale dissipation.

On its left-hand side, Eq. (2) contains the nonlin-
ear and the3 terms which are dominant in differ-2
ent ranges of scales. Here, the balance betwgen
these terms will be analyzed using the notion of th“? 0.25
characteristic time scale rather than the characterss-
tic velocity as in Rhines (1975). The relatively highe
wave-number modes are nearly isotropic and obgy
the classical KBK theory of 2D turbulence in the en-
ergy range. For those modes, a conventionally de- -

0.50

fined eddy turnover timer (k), is a ratio of the lo- 0.5 Kylke

cal length scalek—!, and the local velocity scale,

U(k), which can be estimated from the KBK en- ' 710

ergy spectrumi(k), U(k) « [kE(k)]'/?, yielding

(k) = [K3E(k)] /2, where Figure 1: Normalized spectral energy transfer,

Tr(k|k. ax|7Tg(k|k.)|, for k. = 50.
E(k):CK€2/3k75/3' 3) E( | )/m X| E( | )|

Here,Cx ~ 6 is the Kolmogorov-Kraichnan con-

. - ,nonzonal, or the residual spectrum largely preserves
stant. Equatingr; and the Rossby wave period P gely’p

the shape given by the KBK law, Eq. (3).

Trw (k) = —k?/Bk,, one can find a crossover
wavenumber for theg-effect induced anisotropy The anisotropization of the inverse cascade has
(Vallis and Maltrud 1993), been demonstrated using the results of direct nu-
3, \1/5 merical simulation (DNS) of g3-plane turbulence
kg oc (B7/€)"7 (4) by Chekhlov et al. (1996) who considered the en-

Note that for a stationary, & is also stationary even©rdy transfer function7g (k|k.), describing thek- -
if the flow itself is not in a steady state. Other charaééPendent spectral energy flow from all modes with
teristic wavenumbers for both unsteady and steady-> ke 1 @ given modek, k < k.. The mode
state flows ard:e andk,, where the latter is associ-Fe IS Set arbitrarily but such that. < ke. Figure
ated with the small-scale dissipation. For steady-statesnOWsZz(k|k.) for a simulation withk. = 50

flows, this group should also include the large-scaf@hich was smaller thaks = 79). The hole in the
friction wavenumberks,. middle of the Fig. 1 indicates that the “energy front”

had not yet reached those wavenumbers. There is a
Simulations by Chekhlov et al. (1996), Smith andtriking difference between energy transfer to zonal
Waleffe (1999) and Huang et al. (2001) of the evolvmodesk, — 0 and the rest of the modes. One can
ing turbulence with a3-effect have shown that assee that most of the energy flux is directed towards
the energy propagates to wavenumbers smaller thithe zonal modes; the trend that dramatically increases
kg, the nature of the flow and its spectral characterith decreasing:. The spectral energy transfer has
istics change markedly. At a wavenumber close #dso been calculated by Read and co-workers using
kg, the zonal spectrum&;(k,), undergoes reorga-the data from the Grenoble experiment (this issue).
nization and attains a steep distribution (1) while tHe qualitative similarity to Fig. 1, they obtained an



anisotropic distribution oz (k| k. ) peaking at small integration time than similar simulations with no ro-
ky. tation; this tendency is reflected in the */4 law” (7).

As a result of the spectral anisotropization, the zondlhen a large-scale drag is present, an ensuing
energy on the large scales exceeds its nonzonal costeady-state flow regime is determined by the ratios
terpart, and the total energl,..(¢), can be estimatedbetweenk., kg, kq, andke (Galperin et al. 2006).
based upon the zonal energy spectrum only, There exists a certain subspace of these parameters
in which a flow undergoes zonation and develops a
U2(t) o) _4 universal stationary regime whose anisotropic spec-
Bror(t) = 5 = ZEZ(ky) o 6%k (1), ) trum in the inertial rangek(; < k < kg) approaches
Fom a distribution given by Eqgs. (1) and (3). The sharp
whereU (¢) is the rms of the zonal velocity, arig, (t) ZOnal spectrum is better pronounced for < kg;
is the smallest wavenumber with the spectrum (1) 4@ISO extends to the regiok > k; to its intersec-

ka

timet. As follows from (5), tion with the KBK, isotropic, modak—8/% spectrum
as explained in Sukoriansky et al. (2002). The pa-
ke (£) o [3/2U (4)]"? = kg (t), (6) rameter subspace of this regime is delineated by three

conditions: (1) the inertial range is sufficiently large;
and so one concludes that in unsteady flows with t(®) the forcing operates on scales not impacted upon
zonal spectrum (1), the Rhines wavenumbey, is by the 3-effect; and (3) the frictional wavenumber is
time-dependent and provides the location of the molarge enough#;, > 4(27/L), L being the system
ing “energy front.” Clearly, Eq. (6) does not implysize] to avoid the large-scale energy condensation
the arrest of the inverse cascade; in an unbound&ith and Yakhot 1993, 1994). For convenience,
domain, after sufficiently long timer can attain an Galperin et al. (2006) have coined this regime zonos-
arbitrarily small value. The unsteady flow under conrophic. Sukoriansky et al. (2002) have shown that
sideration highlights the difference betweer and for this regime, the friction wavenumbeiy,, is the
kg, notonlykr < kg (and it may be thakr < kg), *“final destination” of the moving energy front given
but alsokr is time-dependent whilgs is stationary. by Eq. (7), and thuggr ~ kg. The latter relation-
ship will be confirmed in the next section. Similarly
to the unsteady regimé:g is not a scale of inverse
cascade termination by/&effect; the advance of the

ke (1) o kR () o Y2 (et) 14, (7) €nergy fron_t can only be stopped b_y the large-scale

drag. Outside the zonostrophic regime, the flow de-
A similar estimate of the evolution of the movingPends on some additional parameters apcteases
“energy front” for the classical KBK turbulence withto be the “final destination” of the moving energy
no rotation yields the “3/," law (Rose and Sulem front; the latter is still associated witty., however.
1978),

Combining (5) with the linear trenfl, (t) = et, one
obtains

10 () ~1/24-3/2 ®) From the previous studies and the scaling arguments

m{t) € ' in this section, we draw two main conclusions: (1) in
Comparing the *1/,” and “—3/" evolution laws, unsteady flows, the marching in time of the moving
Egs. (7) and (8), respectively, one concludes thanergy front” slows down from the-3/," to “ —1/,”
rather thanhalting the inverse cascade, (&effect law upon crossing of; and the front's location can
only slows down the up-scale march of the energye related tdig; (2) in steady flowskg can be iden-
front. The deceleration of the energy front propagafied with k. in the zonostrophic regime. These con-
tion is caused by the prolongation of the time stretalusions will be confirmed in numerical simulations
necessary to saturate the zonal modes to their enesfiybarotropic 2D turbulence on the surface of a ro-
levels specified by the spectrum (1) [instead of (3)ating sphere described in the next section. In addi-
at the same rate of the energy transterAs a con- tion, using the frequency analysis in Fourier space,
sequence, numerical simulations o-®lane or on an analysis of the interplay between turbulence and
the surface of a rotating sphere require much longer



Rossby waves will also be presented. our unitsR = 1, we shall not differentiate between
the indeces and wavenumbers.

_Inthe unforced, nondissipative, linear limit, Eq. (9)
4. Turbulence and ROSSby waves. gives rise to Rossby waves whose dispersion relation

Results of numerical simula- s
tions Wi, = —20

_m
n(n+1)’

) ) ] ) ] ‘whereg = Q/R. We shall retairg in the forthcom-
This section describes numerical experimentatighy equations in order to preserve the transparency

of a rotating sphere. The flow is governed by the

barotropic vorticity equation, The wavenumben; o« (3%/¢)!/® is the analogue
of kg. In the forced, dissipative regime, the balance
% = —JW,C+ f) +vVPC—N+E (9) betyveen_ the s_mall-scale forcing and Iargg-sc_ale dissi-
ot pation gives rise to a steady state. The kinetic energy
spectrum can be calculated as

(11)

where( is the vorticity; v is the stream function de-

fined asV?y = (; f = 2Qsind is the Coriolis pa- nn+1) & )
rameter (or the “planetary vorticity”)) is the angu- E(n) = — 1 > (e, 12)
lar velocity of the sphere’s rotation; is the hyper- m=-n

viscosity coefficientp is the power of the hypervis-\here the brackets indicate an ensemble or time av-
cous operator(was either 4 or 8 in this studyX is erage (Boer 1983; Boer and Shepherd 1983). This
the linear friction Coefﬁcient, anﬂ is the small-scale Spectrum can be represented as a sum of the zonal and
forcing, respectively. In addition/ (¢, ¢ + f) is the residual spectra(n) = Ez(n) + Er(n), where the
Jacobian representing the nonlinear tefifl, B) =  zonal spectrumf(n), corresponds to the addend
(R?cos )~ (AyBo — ApBy), andR is the sphere’s with m = 0. In unsteady flows (Huang et al. 2001)
radius. For convenience, the unit of length is set ¢hq in the inertial range of the zonostrophic regime
be the radius of the sphere. In these urfits= 1 and  (Sukoriansky et al. 2002; Galperin et al. 2006) these

will be omitted in the forthcoming derivations. Th%pectra are similar to those B‘.‘p|ane turbu|ence,
natural time scale i§" = Q! such that) = 1. To

explore the explicit dependency 6 in some of the Ez(n) = Cz3°n™° Cz~05, (13a)
experimentd” was kept fixed whilé varied. Egr(n) = Cxe?3n™%/3, Cx ~5to 6. (13h)

On the surface of a unit sphere, the stream functidiie zonal and residual spectra intersect at the transi-
can be represented via the spherical harmonics #énal wavenumber,

composition, (cy 3/10 B 1/5 os 3 1/5
V(g )= > Y (ne), (10) (14)

n=1m=-—n

To investigate the energy front propagation in un-
whereY,"(u, ¢) are the spherical harmonics (the asteady flows, a series of long-term simulations was
sociated Legendre polynomialg);= sin6; ¢ is the performed using Eq. (9) decomposed in spheri-
longitude;# is the latitude;» andm are the total and cal harmonics according to Eq. (10). A Gaussian
zonal wavenumbers, respectively, aNdis the total grid was employed with resolutions of 40200 and
truncation wavenumber. Conventionally, the indec&20x 360 nodes and/3 dealiasing rule (rhomboidal
n, m andN are nondimensional. However, when apruncations R133 and R240, respectively). The hy-
pear in equations below, theavenumbers n andm perviscosity coefficienty, was chosen such as to ef-
have the dimension of the inverse length. Since factively suppress the enstrophy range. The Gaussian



Table 1: Parameters of the four runs shown in Fig. 4.

Experiment 2 € ng
1 1 144x10°% 17.6
2 1 258x1077 2438
3 25 1.42x107® 30.6
4 3 144x107% 341

random forcing was distributed amongst all mode 10‘3
ne = 83,84, 85 andng = 99, 100, 101 for R133 and
R240, respectively; it had a constant variance and w —tot
uncorrelated in time and between the modes.

The values of the parameters used in unsteady si
ulations are summarized in Table 1. In total, fot
numerical experiments were performed. Although 10
and ¢ varied in a wide range in these experiment

their values were set such as to ensufe < ng.

For statistical analysis of the results, ensemble &
eraging over 80 to 110 independent realizations w 10
employed.

At first, the energy evolution was investigated. It i 10
well known that without rotation, the total energy o 102 103 104
the flow increases linearly with timey,..(t) = et. t/(ZT[)

We wanted to verify that, firstly, the linear trend is

preserved in the case of nonzero rotation and, sec- _ )
ondly, the zonal and nonzonal total energy compg-'g_ure_z: EVOM'O_” of the total energEFot(t) (thick
nents, EZ (t) and ER (1), respectively, would fol- solid line), and its zqnal (dashed line) and non-
low a similar trend [here,Ewo(t) = EZ.(t) + zoP?aI (dashed-(_llotted_ line) cqmponerﬁz‘zzm(t) and
ER,(1): ER,(t) contains both the eddy and wave enl_?tot(t), respectively, in Experiment 1. A triangle on

ergies]. Figure 2 shows the evolution of the total erfoot(t) Shows the time required for the energy front

ergy and its components for Experiment 1 in a sinfo reach the largest scales in the system in the case

ulation of the duration of 10,000 planetary days (fowhenﬁ = O buteis the same as in Experiment 1.
Experiment 1, 1day 27T). Initially, the zonal en-
ergy is very small and the entire energy is mostly con-
centrated in the nonzonal component. That compo-
nent at first grows linearly, then temporarily preserves
an approximately constant value and then returns to
a linear growth while remaining considerably smaller
than E.¢(t). At those later times, the total energy is
mostly contained in the zonal component. Generally,
after initial restructuring, bothEZ (t) and EE, (t)
grow linearly in time for as long as the flow evolution
remains unobstructed by the action of a large-scale




drag or domain boundaries.

We have conducted an additional simulation featur-

ing =0 and the sameas the one used in Experiment

1. The evolution of the total energy in that simulation

was indistinguishable from the case wijth# 0. The

only difference was that in the cage= 0, the “en-

ergy front” required much shorter time to reach tha
largest scales of the system. The total energy at tl 10 L
moment is marked by a triangle in Fig. 2. Clearly,th E(n)
shortening of the evolution time is a result of the fa:
front propagation described by Eq. (8). Fér#£ 0, 10°°|
the system can accumulate significantly higher e
ergy; according to Eq. (5), this energy scales wii
32 and is independent af This increased energetic 8
capacity of the system is a direct result of the spe 10 7
tral anisotropization and steepening of the zonal spe
trum according to Eq. (1). 10

The behavior of the total energy components exhi ;5™
ited in Fig. 2 requires some clarification. Furthe
insight comes from the consideration of the evolutio ER(n)
of the zonal and residual energy spectra for the sai
Experiment 1 shown in Fig. 3. Driven by the invers 10
cascade, the spectrum expands towards the sn
wavenumber end. Until the transitional wavenurr
berng is reached, the “energy fronth, (t), marked -8|
by the black dots in Fig. 3a, can be identified as
wavenumber with the highest energy. For< ny,, i i

the spectral energy density rapidly decreases. As 10° 10" n 10°
classical 2D turbulence, the ensemble-averaged spec-

tra at the wavenumbers swept by, remain in a Figure 3: Total (a) and nonzonal (b) energy spectra
quasi-steady state. The approximate observanceaptlifferent times in Experiment 1 of unsteady sim-
the classical isotropic KBK distribution (13b) is arulations (=0). The spectra are marked by the to-
indication that as-effect does not yet have a strongal energy (times0°) accumulated in the flow field
influence on these scales. This behavior changgsm the beginning of simulations. Black dots show
whenn,, becomes smaller thary. The spectrum be- the location of the “energy frontf,,,. The transition
gins to steepen up eventually attaining the level difrom the—5/3 to —5 slope around is clearly visible
tated by Eq. (13a). As discussed earlier, the said-plate a. Before the transition, the spectral energy
ration of the spectrum at this level is a slow procesfensity rapidly decreases far< n,,. After the tran-
during which the energy transfer continues not onbtion, the energy accumulates at the modes n.,

to the moden,, but also to the modes with < n,,,. facilitating the emergence of the plateau.

As a result, along with the slope (13a), the energy

spectrum also forms a plateau for< n,,. Let us

emphasize that the moving “energy front;, is not

only a transitional wavenumber between theslope

and a plateau but it also corresponds to the number of

the zonal jets (Chekhlov et al. 1996).

—67

10



the Rhines scale:

1/2 o\ /4
o= (2)"- ()" s

which shows thaty, is time-dependentyg oc t~1/4.
If the evolution of the moving “energy frontyi,, (t),
is plotted againstig (t), then one expects to detect
two different power laws for the dependencerqf
onng. Atthe early stages, while, (¢) > ns and the
‘ ‘ effect of theg-term is not yet felty,, would evolve
5 10 20 according to the 34" law, Eq. (8). Upon reach-
nR:(85t/[32)_1/4 ing ng, as follows from Egs. (7) and (15, and
ngr become proportional to each other. As estimated
from the data, the numerical coefficient betweep
Figure 4: The moving “energy front/h,,, in un- andng is approximately equal to 1.7. The-3/"
steady simulations. The transition from the3/y* and “—1/," evolution laws and the transition between
to the “~1/,” evolution law in the vicinity of the tran- them are confirmed in Fig. 4 for the four experiments
sitional wavenumbers s located at the intersectionssummarized in Table 1. The initial evolution is in-
of the respective dashed lines is clearly visible fateed according to the “34” law which changes to
all four simulations. The figure demonstrates the athe “—1/," law whenn,, approachesg. Clearly, the
sence of the halting wavenumber for the inverse ephange in the exponent of the evolution law is con-
ergy cascade; the "energy front“ can penetrate to thistent with the change in the spectral slope shown in
smallest wavenumbers available in the system.  Fig. 3a. The transition between the two regimes is a
complicated and non-universal process further exac-
erbated by the discrete character of the front propaga-

By comparing Figs. 2 and 3 we establish that tfion. Furthermore, the Iocation_om‘m inthe transition
aforementioned change in the behaviorsiff, (¢) @réa may be somewhat ambiguous as evident from
andER, (¢) is concurrent with the restructuring of thé 19- 38 Nevertheless, the transition wavenumbers

spectra from isotropic, KBK to strongly anisotropi@'€ auite close to the values of in Table 1 for all
distributions upon crossings. Although at large four runs. Figure 4 clearly demonstrates the absence

times, ER, is relatively small, the nonzonal mode§f inverse cascade termination. Althougttaeffect

o

play a crucial role in maintaining the zonal flows ai§ Strong in the range,,, < n;, the moving energy

they effectively preserve the upscale energy cascaff@nt 7m, always reaches the lowest wavenumbers
available in the system.

Note that the evolution of the nonzonal spectrum ) )
Er(n) shown in Fig. 3b provides practically no in-Consider now a gteady-state flow with a Ilnear_ large-
formation on a flow field transformation under the acc@le drag. By its very nature, such a flow is free
tion of a S-effect. IndeedEx(n) retains an approx- of moving fronts; the march of the moving energy
imate KBK distribution, Eq. (13b), with nearly theffont had been damped by the drag. The final, sta-
same value of the coefficiexty for bothng < tionary destination of the moving front,,,, will now
andng > ny. Only the zonal spectrumiy (n), be identified with the friction wavenumbes, whose
reflects the anisotropization by attaining a steep@2dnitude depends on the drag coefficientand,
slope. possibly, also o ande such that generally, one can
write ng, = f(A, 8,¢€). According to the Bucking-
For unsteady flows, the linear growth of the total elram’sII-theorem, this system is fully characterized
ergy, Eyoy = et, yields the following expression forby two functionally related non-dimensional parame-

11
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ters, for instance,

Tty ng

nR

(16)

_f( )

The functional dependency varies according to a
flow regime. Using an extensive series of long-term
steady-state simulations of 2D turbulence witl#-a
effect, we have derived a detailed classification of
possible regimes in the space of parametgysand

ng (Galperin et al. 2006). These regimes are delin-
eated by the dashed lines in Fig. 5. Two of these
regimes, zonostrophic and friction-dominated, are of
particular interest to the present study. The former
is confined to the subspace outlined by the chain in-
equality

nR

This inequality instructs us that (1) the forcing acts
on scales only weakly impacted by&effect; (2)
there exists a meaningful zonostrophic inertial range
whose width is defined by the ratioz /ng, and (3)
there exists a sufficient number of the lowest modes
to resolve the large-scale friction processes and avoid
the large-scale condensation.

The friction-dominated or, briefly, friction regime oc-
cupies the subspace to the left of the top dashed line

Figure 5: Possible flow regimes in 2D turbulenci® Fig: 5 and is delineated by the inequality
with a g-effect in the space of parametetg and

ng. The subspace of the friction-dominated regimes

T8 <15,

(18)
nR

(unfilled squares) occupies the area to the left of the

upper dashed line while the subspace of the zondg+the friction regime, the zonostrophic inertial range
trophic regime (filled dots ) outlined by the chain inis practically non-existent; only the classical KBK in-
equality (17) is confined to the area between the migrtial range may survive far > ng,.

dle, bottom and vertical dashed lines for the R133

experiments. For higher resolution, the vertical lin

moves to larger values ofj.

const.

ket us consider now how Eqg. (16) changes in dif-
ferent regimes. In the zonostrophic regime, when
ng/nr > 1, the dependence on this parameter
ceases (practically, this dependence becomes weak
already atng/ngr 2 2) and one obtaingy, /nr
Let us calculate the numerical value of the
proportionality constant. Since denotes the net
part of the energy input that goes to the inverse cas-
cade, the spectrally-integrated energy balance equa-
tion reads

~

€
Eiot = —.
tot = 5

we obtain the Rhines

(19)

Using this relationship,

12
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Figure 6: The friction scalejy, determined as Figure 7: The correlation between the actual and the-

the intersection of the plateau and thés ranges Oretical values ofiy, in simulations of the large-scale
in simulations of the zonostrophic (filled dots) and

marginally-zonostrophic (empty dots) regimes witha . i ) _
linear large-scale drag. marginally-zonostrophic (unfield triangles adjacent

to the zonostrophic region) regimes with widely vary-
ing values ofA (5 x 107* < X < 2.5 x 1073), ¢
wavenumber in the form (3.3x1072 < e <9x1078),andQ (0.3 < Q < 2).
AR 1/4 Note that due to the steep zonal spectrum, zonos-
ng = (—) . trophic flows have low variability and require long-
4e - . .
term integrations to assemble records sufficient for
On the other hand, since the energy spectrum is costatistical analysis. Galperin and Sukoriansky (2005)
prised of a plateau fon < ng and the inertial have estimated that a record length of up to 00
part well approximated by Eq. (13a) far > ng, after attaining the steady state, = (2\)~! being
the total kinetic energy can be calculated by intehe time scale associated with the large-scale drag,
grating this composite spectrum with respectrto would be adequate for the spectral analysis. Accord-
The integration yields an approximate relationshijngly, our steady-state simulations were of duration
Eiot =~ (5/4)Cz(/R)*ng* (Galperin et al. 2001). of about 60 to 100-. The results of these simula-
Using this expression and Eqg. (20), one can relgte tions are summarized in Fig. 6. Note that the value
tong, of the coefficient in the correlation between. and
ng in EQ. (21) had to be adjusted to 1.2. As one can
see, the linear relationship between andng, holds
faithfully. One concludes, therefore, that, firstly, sim-
ilarly to the unsteady case /Aeffect does not halt the
The coefficient; /4 in the expression foE},; above inverse energy cascade which is now damped by fric-
was stipulated by the assumption that the energgn, and, secondly, in the zonostrophic regime, the
spectrum at < ng is flat. This assumption is onlyRhines scale is, in fact, a scale that characterizes the
an approximation; in real flows, this coefficient magffect of the large-scale drag.
need to be adjusted.

(20)

)\62 1/4
m»r_(mcz)l/“(z) ~15ng. (21

In the friction regime, the drag may be so strong that
Equation (21) was verified in a series of simulats impact extends to the scales where the flow is un-
tions of the zonostrophic (filled dots in Fig. 5) andffected byg (this aspect was considered by Danilov

13



and Gurarie (2002); Smith et al. (2002); James ai 12

Gray (1986)). The functional relationship betwee et
ng/nr andng/ng can then be established using th
assumption that the energy spectrum is isotropic a A &
described by the KBK distribution, Eq. (3). The tota 8t /x/
kinetic energy in this case is given by the expressic M AMT A
Eior ~ %CKEQ/BTL;YQ/B, whereny, is the wavenum- A/A/
ber with the maximum energy. Using the energy bz Adakam
ance equation, Eq. (19), we obtain 4r A
ng = (3CK)* (W) '/, (22)
Using Eqg. (22) and the definitions afs, Eq. (14), 0 a ‘ ‘
andng, Eq. (20), we further find 0 4 8 12
5 nR
ngy = (12CZ)3/2 (n—R) nr
ng
nr )\’ Figure 8: The correlation between the number of the
~ 147 (%) nR. (23) zonal jetspjes, estimated from the velocity profile in

the physical space, ang; obtained from numerical

This relationship is very different from the one desimulations of the zonostrophic regime.

rived for the zonostrophic regime, Eq. (21), because

now ng depends or and is independent gf such

that the proportionality betweeng, andng is lost.

Summarizing, we note that the dependence@fbn jets,n;.. It is of interest, therefore, to compang,;
ng given by Eq. (16) has two limiting cases pertainwith ng, andng.

ing to the zonostrophic and friction regimes. In the ) ) )

former, ng, andng are related linearly and are generfigure 8, derived from simulations of the zonos-
ally quite close while in the latter they diverge fronfroPhic regime, indicates thafe; ~ nr. The spread
each other by a stiff power law. In the intermediof the data points is caused by the discreteness.of
ate cases, the relationship betwegnon ny can be 'Ntherangel < nje, < 10, for example, unavoidable
expected to be nonlinear and complicated which eXDity deviations appear like a 10-25% noise. In fact,

plains why the scaling of the zonal jets’ width witt9iven this uncertaintypr provide_s a faithful estima-
ngl has been so evasive in diverse flows. tlo_n of the number of the zonal ](_ets. _Usmg the corre-
lation betweemy, andng shown in Fig. 6, one con-
Equation (23) has been validated in numerical singtudes that bothz;r1 and n;f are appropriate scal-
ulations with large values of the drag coefficieit, ing parameters for the jets’ width in the zonostrophic
which was chosen such thag/ng < 1.5. These regime. We have also attempted to sealg with ng
simulations are shown as unfilled squares in Fig. &alculated using the nonzonal velocities only. In that
Figure 7 shows a good agreement between the actcase, the correlation between., andngr was con-
values ofng, and those calculated from Eq. (23) witlsiderably worse than that in Fig. 8 and, therefore, it

the coefficient adjusted to 10. is not shown here.

There still remains a question about the proper scéllle now want to analyze the interplay between tur-
ing of the width of the zonal jets which in some studbulence and Rossby waves in order to determine
ies was found to be closetq;l. Note that the scaling whetherng, (or ng) separate turbulence and Rossby
of the jets’ width only makes sense when the jets hawave regions or turbulence and waves coexist in some
approximately homogeneous spatial distribution amenge of scales. To answer this question, it is instruc-
their width can be estimated from the number of thiéve to analyze the Fourier-transform of the two-time

14



n 5 10 20 40 evident from Fig. 9, Rossby waves are present at
m/n’”s 0.41 0.82 164 3.28 far exceeding botlr andng indicating that there is

no separation between Rossby waves and turbulence;
both processes coexist on virtually all scales. Figure
-04 0-02 2-02 0-02 0 02 10 depicts a more complicated wave-turbulence in-

0.2 5

L
-
L
>

0.2 5 2 ! - .
. LU LM LMS M&J teraction. As in Fig. 9, the spectral spikes at small
w04 0-02 9-02 0-¢2 0 02 n are sharp but now they begin to show signs of a

0.6 0.05 5

-
"
-
>

strong wave-turbulence interaction. At largerdue
to a stronger turbulence, the spikes broaden and be-

-0.4 0-0.2 0 -0.2 0-02 0 0.2

2| s 0.02 1 5 B - _ _
£ l ﬂ A Z:E come displaced from the values stipulated by the lin-
S 855? j% J0Z_ 0702 0 021 egr dispersion relationship. This behavior is indica-
w0 |—l—‘—j ‘ . LLJS Qﬁ@ tive of a complex nature of turbulence - wave inter-
‘Ofm 0-0.2 0-02 0-02 0 02 action in the case of the zonostrophic regime which

may manifest itself in the development of the Rossby
wave frequency shift or in the appearance of non-
linear waves different from Rossby waves. Simi-
larly to Fig. 9, Rossby waves and turbulence coexist
for wavenumbers exceeding botty andng. Note

Shat the wave-turbulence interaction is stronger and
more subtle in the zonostrophic than in the friction-
dominated regime; a more detailed investigation of

Figure 9: The velocity autocorrelation function
U(w, m,n) x 107, for the friction dominated regime;
nrg ~ 9, ng ~ 12. The triangles correspond to th
linear dispersion relation (11).

velocity autocorrelation function given by this interaction will be given elsewhere. An important
( ) result from this study is that there exist neither a sharp
Ulw,m,n) = (™ (w)[3), (24) trar?sr_uon between linear and nonlinear regimes nor
4 a distinct boundary between turbulence and Rossby

wherey™ (w) is a time Fourier transformed spectraf/ave spect_ral ranges. This result reinforces our ear-
coefficienty (t) defined in Eq. (10). In 2D turbu- er cor_lclu5|on that neithetg norng can be associ-
lence without Rossby waves](w, m, n) would be ated with the turbulence - Rossby wave transition.
expected to have a symmetric bell shape around the

zero frequency. When the waves are present, they

causeU(w,_m,n) to deyelop _spikes f_;lt frequencieg_ Discussion and conclusions
corresponding to the dispersion relation. The corre-

lation functionU (w, m, n) is therefore a convenient

tool to establish and/or diagnose the dispersion ref@ane of the main results of the presented here theo-
tions in data. A similar approach based upon the anadtical analysis and numerical simulations is the con-
ysis of the autocorrelation function of the sea surfacdusion that a non-dissipative extra-strain in the vor-
elevation obtained from the satellite altimetry haticity equation, ag-term, can cause no arrest of the
been used by other researchers (see, e.g., Glazimaerse energy cascade in 2D turbulence. The effect
and Cheng (1999); Glazman and Weichman (200%))the 3-term on energy transfer manifests in cascade
to diagnose the baroclinic Rossby waves in the oceamisotropization and formation of quasi-1D struc-
The results of our analysis are shown in Figs. t@res, zonal jets. This result can be likened to that
and 10 for the friction dominated and zonostrophia 3D flows with pure rotation where non-dissipative
regimes, respectively. In the former case, for smaktra-strains are brought about by the Coriolis force.
wavenumbers, Rossby waves produce sharp spikemin, turbulent cascade in this case is not arrested
almost exactly corresponding to the linear dispersidiut anisotropized leading to self-organization of the
relation (11). Similar spikes also appear at highdiow field into quasi-2D, large-scale columnar vor-
wavenumbers although they are not as sharp becatises aligned with the rotation axis (Smith and Lee
they are progressively broadened by turbulence. 2605). Even in the case when extra-strains do enter
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40 the Rhines and friction scales is not universal and de-
2.90 pends on the flow regime. It is not surprising, there-
- fore, that Lr has been used as a scaling parame-
ter characterizing various aspects of flows witf3-a
effect. As an example, one may recall that the scaling
with L has been applied both to the equatorial (Hide
1702005 1 9 1966) and off-equatorial (Williams 1978) Jovian jets

' 0. 2 02
e Lu LAL\J m although their widths are quite different. Generally,
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0.1 the Rhines scale is a basic dimensional parameter in
. 4 2 0.2 i .
= 08 LLJ LAQ M m flows where as-effect is a salient feature not nec-
. 04 G 04 01702952 T essarily related to geostrophic turbulence (see, e.g.,
M LM M m Pedlosky (1998); Nof et al. (2004)). It is important,
-0.4 0 -04 0 -05 0 05-1 0 1

therefore, to understand what processes are charac-
terized byLr and determine an appropriate veloc-
ity scaleU. In situations where the spectrum is un-
Figure 10: The velocity autocorrelation functionknown and the flow is affected by multiple factors,
U(w, m,n), for the zonostrophic regimeyg ~ 5, the identification of the dominant processes and the
ng ~ 14. The scaling coefficients fdv are10° for correct choice of/ are essential (see, e.g., Barry etal.
n =5 and 10 and 0® for n = 20 and 40. The trian- (2002)).

gles correspond to the linear dispersion relation (1],22\'5 was shown in section 4, a nondimensional pa

rameterRz = ng/ngr plays a key role in quasi-2D,
steady state turbulent flows withzaeffect. By virtue
the kinetic energy equation as sink terms, they cagf determining the type of a flow regime, this pa-
not totally suppress turbulent cascade. For examplameter reveals an important information on various
in the case of 3D flows with stable stratification, thergspects of large-scale circulations. Recasfitgin
also exists strong anisotropization. Along the dire¢erms of the basic flow parameters, we obtain
tion of the extra-force (i.e., the gravity), turbulent ex-
change diminishes, but in the normal planes, turbu- o1/2 (CZ)?’/IO (6U5)1/10

lence is not suppressed and may even be enhanced "4 Cx 2
(Sukoriansky et al. 2005; Smith and Waleffe 2002). 5\ 1/10
In all these cases, the extra-strains support various ~ 0.7 (BU ) ) (25)
types of linear waves which can coexist with turbu-

lence in wide ranges of scales.

€

This number can also be defined in terms of the ex-

Our simulations revealed neither a separation bgrnal flow parameters,, 5 ande,
tween the regions of turbulence and wave domina-

. C 3/10 32 1/20

tion nor a large-scale threshold of the Rossby wave Rz = 212 (_Z> (_>
propagation. The opposite is true; similarly to the Ck A°

internal and inertial waves, Rossby waves can coex- 32\ V%

ist with turbulence in a wide range of scales. Rather ~ 0.7 (F) (26)

than being a scale of the cascade arrest, the Rhines

scale may characterize many different phenomena.The zonostrophic regime is characterizediy > 2

the present study, this conclusion is illustrated by twi addition to the smallness of the Burger number,
examples. In unsteady flow&,r appears as a scaleBu; see e.g. Galperin et al. (2006)) while for the
of the largest energy containing structures, while iiniction-dominated regime ks < 1.5. The range

a steady state zonostrophic regime, the Rhines schle < Rg < 2 corresponds to a transitional regime
coincides with the scale of the large-scale frictionvhose properties are not universal. It is instructive to

Furthermore, itis shown that the relationship betweelculate the values @t for different environments.
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To illustrate the significance dtg, we shall consider planets are consistent with Eq, (13a) in both the slope
a wide variety of environments with smallu rang- and the magnitude (Galperin et al. 2001; Sukoriansky
ing from the small-scale turntable used in the Grenet al. 2002).

ble experiment (Read et al. 2004) (see also Read et

al., this issue) and to the terrestrial oceans to the soffftinteresting implication can be drawn regarding the
giant planets’ weather layers. “barotropic governor” (James and Gray 1986; James

1987) the essence of which is the reduction of the

For the Grenoble experiment, using the parametqrstential-kinetic energy conversion rate of the baro-
reported in Read et al. (this issue), one obtdise clinic instability due to the increase of the horizontal
(0.5,2.3), i.e., the experimental flow was marginallyparotropic shear resulting from the inverse cascade in
zonostrophic. It is not surprising, therefore, that thithe barotropic mode. In light of the present results,
flow field obtained in some experiments exhibited is tempting to think of the barotropic mode as a
zonation, spectral anisotropization, and build up gbvernor in a rather broader sense than just a regu-
the zonal spectrum described by Eq. (13a). lator of the baroclinic instability. In the case of the

_ ) zonostrophic regime with a profound inertial range
For the oceanic flows, the magnitudecofan be es- (or jarge R 5), the barotropic mode contains most of
timated betweert0™" and 10~** m* s7°, the lat- yhe kinetic energy and hence truly governs the large-
ter value follows, for example, from the realisticgcge circulation and its energetics. As shown in
eddy resolving simulations by Nakano and Hasumgjkoriansky et al. (2002), the total kinetic energy of
(2005). With such values of and U of the or- 4 circulation in this regime is determined By R and
der of 10 cm s, one finds thatis € (1,2.8). . only and is independent of the external forcing or
Similarly to the Grenoble experiment, the oceanife energy conversion rate unless these dependencies
flows are on the verge between the zonostrophic agd jmplicitly embedded in the friction wavenumber
friction-dominated regimes. Visually, oceanic ﬂow%fr the physical mechanism of which is not always
are quite erratic as would be expected in the trangj|| understood and is a subject of an ongoing re-

tional regime. However, averaging in time revealsaarch (see, e.g., Milller et al. (2005)).
zonation (see, e.g., Maximenko et al. (2005); OI-

litrault et al. (2006)) and spectral anisotropization

(Zang and Wunsch 2001) suggesting tRatis rather Acknowledgement We are grateful to Drs P.L.
close to 2. In addition, some numerical modeRead, M.E. Mcintyre, W.R. Young, A. Showman,
show the build up of the zonal spectrum according.-P. Huang and N. Maximenko for numerous dis-
to Eg. (13a) (Galperin et al. 2004). Even though treissions and comments during the course of this
zonostrophic inertial range in the ocean is small amdsearch. Thoughtful comments from anonymous
the barotropic currents are relatively weak, by virtueeviewers helped us to improve and clarify the
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depth these currents can still play an important rolRO grant W911NF-05-1-0055 and the Israel Sci-
in the dynamic and transport processes. Studiesesfce Foundation grant No. 134/03 is greatly appreci-
these processes are now becoming an area of anated.
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