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ABSTRACT

Although possibly the simplest model for the atmospheres of the giant planets, the turbulent forced-
dissipative shallow water system in spherical geometry has not, to date, been investigated: the present study
aims to fill this gap. Unlike the freely-decaying shallow water system [Cho & Polvani, Science, 273, 335
(1996)] equilibrium states in the forced-dissipative system are highly dependent on details of the forcing and
the dissipation. For instance, it is found that, for a given equilibrated energy level, the steadiness of zonal jets
depends crucially on the balance between forcing and dissipation.

With long (up to 100,000 days) high-resolution (T170) calculations, the dependence of the equilibrium
states on Rossby number Ro and Rossby deformation radius LD is explored, for the case when the dissipation
takes the form of hypodiffusion (acting predominantly at large scales) and the random forcing at small scales
is δ-correlated in time. When LD is large compared to the planetary radius, zonal jets are verified to scale
closely with the Rhines scale over a wide range of Ro; furthermore, the jets at the equator are found to be both
prograde and retrograde with approximately equal likelihood. As LD is decreased, the equatorial jets become
increasingly and consistently retrograde, in agreement with the freely decaying turbulence results. Also, the
regime recently discussed by Theiss [J. Phys. Ocean, 34, 1663, (2004)], where zonal jets are confined to low
latitudes, is illustrated to emerge robustly in the limit of small LD . Finally, specific calculations with parameter
values typical of the giant planets are presented, confirming many of the earlier results obtained in the freely
decaying case.

————————————–

1. Introduction

The banded appearance of the giant planets and their rich
atmospheric features remain largely unexplained. One line
of work, pioneered by Busse (1976) has argued that the al-
ternating bands are the surface signature of convective cir-
culations that extend deep into those planets, with concent-
ric cylinders rotating parallel to the planetary axis of rotation
and intersecting the planets’ surface. While appealing at first
sight, this idea has in practice proven difficult to simulate nu-
merically. For one thing, much remains unknown about the

Corresponding author address:
R. K. Scott, Northwest Research Associates, Inc., P.O. Box 3027,

Bellevue, WA 98009-3027.
Email: scott@nwra.com

planets’ interior (Guillot 1999), implying that many assump-
tions need to be made about the planets’ composition, and
many largely unconstrained parameters (e.g. the diffusiv-
ity in the interior) need to be chosen to perform actual sim-
ulations. Furthermore, most published computations with
such models (e.g. Heimpel et al. 2005; Stanley and Blox-
ham 2004; Sun et al. 1993) have, to date, used a Boussinesq
approximation, implying the density is nearly constant with
radius, surely an unrealistic assumption for the massive giant
planets.

Alternatively, a different line of work, pioneered by Willi-
ams (1978), has sought to explain the key observed features
using a much simpler idea. Assuming that the bands and
embedded vortices are the manifestation of a shallow atmo-
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spheric circulation, two-dimensional or nearly geostrophic
equations have been used to model the thin atmospheric lay-
ers of the giant planets. Such studies are closely related to
the large literature on two-dimensional and geostrophic tur-
bulence, and have tried to explain the formation of the bands
in terms of an arrest of the upward energy cascade owing to
strong rotation (Rhines 1975). In addition to requiring con-
siderably more modest computational resources, these mod-
els require a much smaller number of free parameters to be
chosen for practical computations.

Following this simpler idea, Cho and Polvani (1996a, b)
using the shallow water equations showed that, in the ab-
sence of forcing, an initially random flow on the sphere
spontaneously organizes itself into a banded configuration,
with the observed number of bands roughly appearing for
each of the four giant outer planets once the radius, rotation
rate, and Rossby radius are specified. One notable short-
coming of that model, however, concerns the direction of the
zonal winds at low latitudes: while Jupiter and Saturn have
strong prograde jets at the equator, the freely evolving flows
in that model always generate a retrograde equatorial jet.
More importantly however, the model of Cho and Polvani
suffers from a fundamental limitation: it represents a freely-
evolving (i.e. unforced) system. Given that the bands have
been observed for hundreds of years and are very robust, it is
much more likely they result from a forced-dissipative sys-
tem (rather than a decaying one).

Extending the results of Cho and Polvani to the forced-
dissipative case is the main goal of the present study. We
start in Section 2 by reviewing some key ideas in geostrophic
turbulence. While a great deal of work has been carried out
with non-divergent 2D flows (i.e. with an infinite deform-
ation radius) or with divergent nearly 2D flows in doubly
period or channel geometries, we submit that, for purposes
of understanding the banded appearance of the giant plan-
ets, a minimal model needs to have the following three char-
acteristics: it should be in spherical geometry, deal with a
fluid with a finite deformation radius, and represent a forced-
dissipative system. We are aware of no paper in the literature
that has presented results for such a system.

The paper then proceeds as follows. In Section 3 we de-
scribe the physical details of our model (forced-dissipative
shallow water equations on the sphere) in a general con-
text. In Section 4 we explore how different forcing func-
tions can yield quite different results, an issue that is usually
ignored, even in simpler 2D forced-dissipative turbulence
studies. In Section 5 we present the results of our simula-
tions, showing how banded structures appear as the forcing
amplitude is decreased, and how finite deformation radius
leads to equatorial confinement of the zonal jet, an idea sug-
gested by Theiss (2004) but not previously demonstrated via
direct numerical computation in spherical geometry. Further
details of our forced-dissipative turbulent flows (e.g. cyc-

lone/anticyclone asymmetry) are discussed in Section 6. In
Section 7 we refocus our attention on the giant planets, and
present forced-dissipative calculations using observed plan-
etary values for the physical parameters. A brief summary
and discussion closes the paper.

2. Review of geostrophic turbulence

Geostrophic turbulence is characterize by the simultan-
eous presence of both turbulent and wave-like motions. Ele-
mentary considerations based on the advective nature of
PV and the principle of invertibility suggest that mixing
of PV by the turbulent eddies will eventually lead to dis-
tinct latitudinal regions dominated by vortical motion where
the PV is homogenized, separated by sharper jumps of PV
on which the motion has a more wave-like character (e.g.
McIntyre 1982, and references therein). According to this
view, the zonal mean PV field develops naturally into a stair-
case structure, the flow is anisotropic and typically domin-
ated by narrow zonal jets along the jumps in PV. The length
LRh ∼

√

2U/β, where U is a typical velocity and β is
the planetary vorticity gradient, was introduced by Rhines
(1975) as the scale at which the flow ceases to be dominated
by isotropic motion.

Rhines’ original scaling was for 2D barotropic motion,
but the procedure is the same for equivalent barotropic mo-
tion, or finite deformation radius. When the effect of the β
term in the vorticity equation is weak, that is, at scales for
which the advection of relative vorticity dominates the ad-
vection of planetary vorticity, the timescale, τ , for turbulent
motion at wavenumber scale k is given by

τ ∼ (kU)−1 (1)
for a typical velocity scale U . On the other hand, when the
β term is significant, the background PV gradient supports
Rossby waves with frequency of magnitude:

ωRo =
kβ

k2 + l2 + L−2

D

(2)

Anisotropy will develop at scales for which the turbulent
motion projects significantly onto Rossby wave motions,
that is, for τ−1 ∼ ωRo, or at wavenumber

kRh ∼
√

β

2U
(1 − α), (3)

where α = U/βL2

D. When L2

D < U/β (α < 1), there
is no overlap between the Rossby wave and turbulent eddy
frequencies and the flow should remain isotropic (Okuno and
Masuda 2003; Smith 2004; Theiss 2004).

In the forced-dissipative case, (3) does not determine kRh
a priori, since U generally depends in a nontrivial way on
both the energy injection and the large-scale dissipation. In
the case LD → ∞, an alternative formulation was pro-
posed by Maltrud and Vallis (1991) that was based instead
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on the upscale energy flux ε. In an isotropic, energy cascad-
ing inertial range, the typical eddy timescale at wavenum-
ber k can be written in terms of the kinetic energy spectrum
E(k) ∼ ε2/3k−5/3 as

τ ∼
[

k3E(k)
]

−1/2

. (4)

Equating τ−1 with ωRo gives

kRh ∼
(

β3

ε

)1/5

(5)

This expression is useful because in practice it is often easier
to constrain a priori the upscale energy flux than the total
energy, which depends also on the large-scale dissipation.
An extension of (5) to finite LD was considered by Smith
(2004). Recent studies also have focused on the effect of
large-scale dissipation on the scaling of jets at equilibrium
(e.g. Danilov and Gurarie 2002, 2004; Smith 2004; Sukori-
ansky et al. 2006).

The β-plane approximation has limited application to
planetary atmospheres because of order one variations of
Coriolis parameter with latitude, φ. On the sphere, both β
and LD increase as φ → 0 and decrease as φ → π/2. Spe-
cifically, we have β = 2Ω cosφ and LD =

√
gH/2Ω sinφ.

A local application of the planar expression (3) indicates
that, for small enough LD, the motion will be anisotropic at
low latitudes where 1−α > 0, and isotropic at high latitudes
where 1 − α < 0 (Theiss 2004). Theiss also demonstrated
the existence of this regime using a modified β-plane model
that permitted latitudinal variations of deformation radius in
a self-consistent manner. Since LD diverges at the equator,
it would appear that there will always be a latitude band near
the equator for which (3) is satisfied, even for very large
U/β. However, for consistency near the equator one must
substitute the equatorial deformation radius Leq ≡

√
aLD,

where here LD =
√
gH/2Ω is the polar deformation radius,

a is the planetary radius, and H is the mean layer depth.
Treating LD as an external parameter, the dispersion re-

lation for the modified Rossby-Haurwitz wave is

ωRo =
2Ωm

n(n+ 1) + a2/L2

D

, (6)

where m and n are the azimuthal and total wavenumbers,
respectively, in the expansion in spherical harmonics. This is
an ad hoc expression but it is useful for comparison with the
β-plane results. Equating ωRo with the turbulent frequency,
τ−1 ∼ nU/a gives

nRh ∼
√

aΩ

U
(1 − α), (7)

where now α = aU/ΩL2

D, which is valid provided L2

D >
aU/Ω. In deriving (7) we have used n ∼ 2m for iso-
tropic wavenumbers. Because the Rossby-Haurwitz waves

are global modes, this analysis does not include a depend-
ence of the Rhines scale on the local planetary rotation gradi-
ent [i.e. only Ω appears in (7)]. A local analysis may be
more appropriate in cases where there are many alternating
jets between pole and equator. In the limit LD → ∞ the
spherical equivalent of (5) is, from (6),

nRh ∼
(

Ω3

ε

)1/5

. (8)

In section 5 below, we verify that (8) holds to a good approx-
imation across a wide range of energy fluxes in the shallow
water system with large LD.

Many recent numerical studies of geostrophic turbulence
in spherical geometry lend support the above scaling argu-
ments. In the freely decaying case both barotropic (Yo-
den and Yamada 1993) and shallow water (Cho and Polvani
1996a, b; Iacono et al. 1999b) dynamics have been con-
sidered. Applied to the four giant planets Cho and Polvani
(1996b) found that the scale of zonal jets in shallow wa-
ter dynamics was consistent with the observed zonal mean
winds. Another study (Cho and Polvani 1996a) found that
the divergent nature of shallow water motion affects the tur-
bulent structure and that cyclone-anticyclone asymmetry is
important at small LD (see also Iacono et al. 1999a). The
freely decaying case is attractive because it requires no as-
sumptions about forcing or large-scale dissipation and final
equilibria depend only on the initial conditions but it clearly
has limitations. All of the above studies found that equat-
orial motion is dominated by retrograde flow, in contrast to
observations of the zonal mean flow on Jupiter and Saturn.
Further, because a fraction of the initial energy is invariably
lost to small-scale diffusion, and equilibration in general oc-
curs over very long time scales, freely-decaying turbulence
tends to produce weakly energetic flows and weak, undu-
lar jets. More importantly, the freely-decaying problem has
limited application to planetary atmospheres where energy is
continually resupplied, perhaps through thermal convection
from the planetary interior.

Studies of the forced-dissipative case, on the other hand,
have so far been restricted to barotropic dynamics. Huang
and Robinson (1998); Nozawa and Yoden (1997) obtained
zonal jets that were very steady in time, with the jet spa-
cing decreasing with decreasing forcing amplitude. Other
studies showed differences in the power spectra of zonal
and background vorticity fields and found some similarit-
ies with zonal wind spectra obtained from the giant plan-
ets (Galperin et al. 2001; Huang et al. 2001; Sukoriansky
et al. 2002). The issue of how dissipation influences jet spa-
cing has also been considered recently by Sukoriansky et al.
(2006) who argued that it is frictional processes rather than
the Rhines effect that provides the actual halting mechan-
ism of the inverse energy cascade. It has also been shown
that both prograde and retrograde equatorial jets occur with
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roughly equal likelihood (Dunkerton and Scott 2006). How-
ever, in view of estimates of LD on the giant planets, e.g.
around LD/a ≈ 0.025 for Jupiter or Saturn (e.g. Cho et al.
2001; Ingersoll et al. 2004), the barotropic model has limited
application to those atmospheres.

3. Physical model and numerical procedure

We consider the shallow water system on the sphere,
forced at small scales in the vorticity equation by an isotropic
random process, with small-scale dissipation in the form of
hyperdiffusion (to control the forward enstrophy cascade)
and various forms of large-scale dissipation (to allow equi-
libration of total energy). In terms of the vorticity, ζ, diver-
gence, δ and height h, the equations are:

ζt + ∇ · (uζa) = F +Dζ (9a)
δt − k · ∇ × (uζa) = −∇2(E + gh) +Dδ (9b)

ht + ∇ · (uh) = Dh (9c)

where ζa = f + ζ is the absolute vorticity, f = 2Ω sinφ is
the Coriolis parameter, u is the velocity, E = |u|2/2, and g
is gravity. The terms F and Dξ , for ξ ∈ {ζ, δ, h}, represent
forcing and dissipation terms, respectively.

The important physical parameters for this system are the
Rossby and Froude numbers, defined as

Ro =
U

2aΩ
and Fr =

U√
gH

(10)

respectively, where U is a typical velocity scale. Either
of these can be replaced by the Burger number, Bu =
Ro2/Fr2 = (LD/a)

2, where LD =
√
gH/2Ω is the po-

lar deformation radius. We nondimensionalize all quantities
as follows: horizontal lengths are scaled by the planetary
radius a and time is scaled by the planetary rotation period
2π/Ω, so, in particular, a time of t = 1 corresponds to one
planetary rotation.

The forcing F is a small-scale, random process centered
around a fixed total wavenumber nf = N/4, where N is
the maximum total wavenumber, designed such that the rate
of energy input into the system, ε0, is constant. [As shown
in Scott (2006), the inverse cascade is sensitive to the ratio
N/nf , which should not be too small.] The spectrum of F
is given by

F̂ (n) =

{

ε0/∆n |n− nf | ≤ ∆n/2,

0 otherwise
(11)

where ∆n = 4. The time dependence of the forcing is
Markovian, determined by a decorrelation time scale cr with
0 ≤ cr <∞. There are two limiting cases, corresponding to
δ-correlated or white-in-time forcing (for cr = 0) and steady
forcing (for cr → ∞). In the former case, a constant kinetic

energy input of ε0 is achieved by setting

f̂mn =

√

2n(n+ 1)ε0
(2n+ 1)δt∆n

eiθ (12)

where f̂mn is the spectral coefficient of F , m is the azi-
muthal or zonal wavenumber, δt is the timestep, and where
θ is a random phase. For the case of Markovian forcing with
cr � δt, a standard formulation is used, starting with

f̃mn(t+ δt) = (1 − r2)1/2eiθ + rf̃mn(t) (13)

where r is related to the decorrelation radius by cr = δt/(1−
r) = 0.1. The f̂mn are then defined by

f̂mn = ε0f̃mn/〈f̃mnζ̃
∗

mn〉. (14)

Where 〈·〉 denotes a global average and ∗ is the complex
conjugate. Note that in the shallow water system these for-
mulations are only approximate because the energy is not a
quadratic quantity.

The dissipation,Dξ , comprises scale-selective hyper- and
hypo-diffusion, acting at small and large scales, respectively:

Dξ = −
[

νh(−∆)δh + νl(−∆)δl

]

ξ (15)

The subscripts h and l refer to the dissipation acting on high
and low wavenumbers, respectively. For the small scales
we use δh = 4 and νh = 10/[N(N + 1)]δh (i.e. a damp-
ing timescale of 0.1 on the highest wavenumbers). For the
large-scale dissipation, three choices are discussed in sec-
tion 4: (i) a Rayleigh friction with δl = 0; (ii) a radiative
relaxation, again with δl = 0 but applied only to the per-
turbation height field, i.e. Dζ ≡ Dδ ≡ 0, thereby relax-
ing the perturbation height field to zero without any form
of mechanical damping; and (iii) a standard hypodiffusion
with δl = −1. The diffusion coefficients in the three cases
are νl = 0.0001, νl = 1, νl = 0.01, respectively, which
ensures an approximate equal equilibrated energy between
the cases. In the following section we examine how the total
equilibrated energy and hence the typical velocity scale U
and Rossby number Ro depends on the energy input ε0 and
the dissipation parameters.

The numerical model, whose full details can be found in
Rivier et al. (2002) and Scott et al. (2004), uses a pseudo-
spectral horizontal discretization of (9). The time discretiza-
tion is a standard leap-frog scheme with forcing and dissip-
ation terms treated implicitly, and the time step is adaptively
adjusted based on the CFL condition. The spectral resolu-
tion in most of the calculations presented is T170, i.e. the
maximum resolved total wavenumber is 170, corresponding
to a 512 × 256 longitude × latitude grid. Some simulations
have also been performed at T341, to verify that the results
obtained are independent of numerical truncation.
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4. Dependence on forcing and dissipation

Recent studies of β-plane turbulence have considered
equilibration of forced-dissipative turbulence by large-scale
dissipation(e.g. Danilov and Gurarie 2002; Smith 2004).
Danilov and Gurarie (2004) also considered the effects of
different types of large-scale dissipation operator and found
there is a distortion of the energy inertial range similar to
that found in two-dimensional turbulence (e.g. Borue 1994;
Sukorianski et al. 1999), when dissipation is restricted to the
large scales. For the special case in which the large-scale dis-
sipation takes the form of a linear drag, Danilov and Gurarie
(2002) and Smith (2004) provided estimates for the jet scale
in terms of the drag coefficient and energy input. In spher-
ical geometry, Sukoriansky et al. (2006) provide a detailed
analysis of jet scaling in the case of the forced barotropic
system with linear drag. So far there has been no systematic
analysis of the effects of forcing and dissipation in shallow
water turbulence in spherical geometry

In this section, we explore the extent to which the forcing
and large-scale dissipation affect the equilibrium states. We
seek physically meaningful choices of forcing and dissipa-
tion that lead to steady, equilibrated jets, to allow a com-
parison in section 5 of the characteristics of equilibria for
different physical parameters. In the present discussion we
focus on the case of large deformation radius, LD = 10,
to minimize divergent effects, and consider a representative
value of energy input, ε0 = 0.1 × 10−6. The many different
forms and combinations of forcing and dissipation mechan-
isms make this a large problem; here we do not attempt a
comprehensive treatment but provide some basic examples
of how the turbulent flow depends on these choices.

a. Energy injection

Our forcing is designed to represent the actual forcing
of the giant planetary atmospheres by overturning convect-
ive systems or other random motions generated by the deep
turbulent interior. There is very little known about these pro-
cesses and so a simple set of assumptions is required. Keep-
ing these to a minimum, we suppose that the forcing is ran-
dom in space and time, uniform, homogeneous and isotropic
in space, and induces motions primarily at scales smaller
than those of the dominant features of the atmospheres. For
convenience we also require that the forcing can inject en-
ergy into the system at an easily controlled rate. The reader
is referred to Showman (2006) for further discussion and an
example of physical space forcing.

Forcing at small scales gives rise to an inverse energy
cascade through an inertial range where the effects of for-
cing and dissipation are small. We choose the forcing to
be Markovian in time and arranged such that the total en-
ergy input is constant. Fig. 1 shows the energy evolution for
different values of the decorrelation time scale, cr, from 0
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FIG. 1. Total kinetic energy normalized by input rate against
time for the decorrelation radius cr = 0, 1, 10, 100,∞ (increasing
dash lengths from dotted to solid). Bold lines denote total energy,
light lines denote energy in the “azonal” wavenumber sector, m >
n/5.

for delta-correlated (white-in-time) forcing to ∞ for steady
forcing. The energy growth is approximately linear up to
t = 500 (i.e. 500 planetary rotations). The actual total en-
ergy transfered upscale, ε, i.e. the energy input ε0 minus the
energy lost to the small-scale hyperdiffusion, can be calcu-
lated from the slopes of the lines, giving ε between about
0.4ε0 and 0.45ε0. Increasing the distance in spectral space
between the input scale and truncation wavenumber results
in a greater fraction of ε0 being transfered upscale, but re-
duces the separation between the large scales and the input
scale.

The light lines in Fig. 1 show the “azonal” component of
the energy, arising from spectral modes for which m > n/5.
[Note this definition differs from that of Huang et al. (2001),
Fig.1 therein, where the azonal sector comprised “segment”
wavenumbers. The current definition includes all isotropic
wavenumbers, only excluding wavenumbers near the zonal
axis, and is a more natural representation of the eddy field.]
The azonal kinetic energy is a much larger fraction of the
total energy for the cases with cr ≤ 10: over a third the
energy is contained in the azonal modes, compared with
less than a tenth for cr ≥ 100. In other words, a larger
fraction of the energy input into the system remains in the
eddy modes, and hence at small scales, before organizing
into zonal modes. In turn, more energy at small scales im-
plies stronger dissipation by the small-scale hyperdiffusion,
which accounts for the systematic reduction in ε with de-
creasing cr. Examination of the spatial dependence of the
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vorticity field (not shown) for the steady and δ-correlated
cases confirms that there is a more active eddy field in the
latter case.

Since steady forcing is difficult to motivate physically, we
conducted our main calculations using the values cr = 10
and cr = 0. In fact, despite the small differences at early
times, the long time behavior is very similar between these
two choices, and so we report only the case cr = 0.

Of course, there are many other factors that determine the
form of the energy injection: the forcing could be applied to
the divergence or height fields rather than the vorticity field,
as here; it could also be applied in physical space rather
than in spectral space; it could be designed as a represent-
ation of outflow from convective systems, or of the stirring
induced by a horizontal shear instability; the scale of the
forcing and the spectral or physical space distribution must
also be chosen. A detailed study of these factors is beyond
the scope of the present work.

b. Large-scale dissipation

One of the commonest mechanisms for removing energy
in forced turbulence is a linear drag, or Rayleigh friction.
Fig. 2a shows the time evolution of the zonal mean zonal
velocity for a typical case. Zonal jets (light denotes east-
ward) quickly form and reach a quasi-equilibrium, with very
small and gradual drift of the jets over time. The total energy
reaches equilibrium by about t = 104 days.

Undoubtedly, the biggest motivation for using Rayleigh
friction in turbulence studies is that it provides a simple clos-
ure for the total energy of the system. For a given net energy
input ε and a Rayleigh friction coefficient νl (in the notation
of Section 3), the total equilibrated energy in the barotropic
system is given by E = ε/2νl. This closure allows a certain
amount of analytic progress in the barotropic case and en-
ables the Rhines scale to be predicted from (7) a priori for
a given forcing and dissipation strength (e.g. Danilov and
Gurarie 2002; Smith 2004).

However, the equilibrated total energy by no means fully
characterizes the equilibrium flow. Different flows with the
same E can be readily obtained by multiplying both the en-
ergy input and the friction coefficient by the same factor.
Fig. 2b shows a case identical the previous one, but with
energy input and friction multiplied by a factor of 10. Con-
sistent with expectations from scaling, the number of jets in
the domain in each case is the same, being determined by
total energy of the flow through (7), which differs only by
around 10% between the two cases. However, although the
number of jets is the same, the character of the jets is com-
pletely different, remaining very steady in time in the first
case, but exhibiting larger short term variability manifested
in meandering jets in the second. Note how the direction of
the equatorial flow changes from retrograde to prograde at

0 105
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-90

0

90

φ

(a)   (ε0,ν) x 1

0 105

t  [days]

-90
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90

φ

(b)   (ε0,ν) x 10

FIG. 2. Zonal velocity against latitude for large-scale dissipation
modeled by Rayleigh friction, with energy input and friction coef-
ficient (ε0, νl) = µ(0.1 × 10−6, 10−4), with multiplier (a) µ = 1
and (b) µ = 10; deformation radius LD = 10. The total energy
in each case is approximately the same. Color scales are normal-
ized according to the rms value, with light (dark) shades indicating
eastward (westward) flow.

around t = 4 × 104.
Fig. 3 shows the instantaneous vorticity field at t = 105

for the two cases illustrated in Fig 2. There is much greater
small-scale eddy activity in the second case than in the first,
where more of the energy organizes into zonal bands. In the
second case, the balance between energy input and removal
is attained at smaller scales. We emphasize that equilibrium
does not depend uniquely on the equilibrated total energy
but that, on the contrary, very different flow fields can be
obtained with similar total energy and depending only on
the strength of forcing and dissipation.

In the context of a rotating fluid in contact with a rigid
surface or ground Rayleigh friction has natural justification
in terms of the Ekman pumping due to the frictional bound-
ary layer. On the other hand, for an atmospheric layer not
in contact with a frictional ground Rayleigh friction, which
damps momentum equally at all scales, is less justified (e.g.
Smith 2004). As a representation of dissipation in the at-
mospheres of the giant planets, Rayleigh friction may be of
marginal relevance, notwithstanding the possibility of mag-
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FIG. 3. Vorticity field at t = 105 days for the cases shown in
Fig. 2. Orthographic projection; light shades correspond to positive
vorticity.

netohydrodynamic damping in the deeper atmosphere. In
the context of planetary atmospheres a more physically mo-
tivated large-scale dissipation arises from radiative relaxa-
tion, which we consider next.

An example of a case using radiative relaxation as large-
scale dissipation is shown in Fig. 4a. This case is otherwise
similar to the Rayleigh friction case shown in Fig. 4a. An
interesting feature of the evolution is that the flow at low lat-
itudes increases continually throughout the integration. The
reason for this is that radiative relaxation places only a very
weak constraint on the angular momentum in low latitudes
(e.g. Garcia 1987; Haynes 1998; Scott and Haynes 1998). In
the present case, forcing continually injects energy into the
system which then accumulates in the zonal flow. The flow
in midlatitudes is damped by the effect of the relaxation on
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φ

(a)  Radiative relaxation

0 105

t  [days]

-90
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90
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(b)  Hypodiffusion

FIG. 4. Zonal velocity against latitude for different forms of
large-scale dissipation (a) radiative relaxation with relaxation coef-
ficient νl = 1, (b) hypodiffusion with diffusion coefficient νl =
0.01. Energy input as in Fig. 2a. Color scales are normalized ac-
cording to the rms value.

the streamfunction, but in the tropics the relation between
height and streamfunction is weaker and there is less damp-
ing of the flow there. Note that the equatorial jet is both
stronger than the midlatitude jets and prograde, two features
in common with the zonal mean velocity profiles of the giant
planets.

Radiative relaxation is commonly used to model atmo-
spheric flows but appears not to have been considered pre-
viously in more idealized studies of two-dimensional equi-
valent barotropic or shallow water turbulence. One pos-
sible reason is that, unlike Rayleigh friction, there is no ob-
vious relation between the radiative relaxation coefficient
and the equilibrated total energy. Indeed, even the process
of equilibration is unclear in spherical geometry, because
of the weak constraint on angular momentum at low lat-
itudes. In shallow water, radiative relaxation is represen-
ted by a relaxation to zero of the perturbation height field,
that is, a term −νlh on the right hand side of (9c). In
midlatitudes, as on the β-plane, this is equivalent to a lin-
ear relaxation on the streamfunction. Further, because the
streamfunction is related to the vorticity through the inverse
Laplacian, a relaxation on the streamfunction is intrinsically
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more confined to larger scales than the linear vorticity drag
of Rayleigh friction described above. Radiative relaxation
therefore provides a means to remove energy at large scales
without affecting smaller scales, and in a way that has nat-
ural physical motivation; see also Showman (2006) for a dis-
cussion of the radiative balance on Jupiter. The drawback in
spherical geometry appears to be an exceedingly slow rate
of equilibration at low latitudes.

The third form of large-scale dissipation is a simple hy-
podiffusion, an example of which is shown in Fig. 4b. We
have chosen the diffusion coefficient to be such as to give ap-
proximately the same equilibrated total energy as in the case
with the Rayleigh friction, although now there is no simple
closure that can determine the energy a priori on the basis
of the forcing and diffusion. Comparing with Fig. 2a we see
that the number of jets in the domain is similar, consistent
with idea that this is determined by the total energy. In other
aspects, such as the structure of the jets, the two calculations
are also similar.

At first sight, hypodiffusion has no physical motivation,
though it has the useful property of restricting dissipation ef-
fects to the largest scales only. In fact, for the special case
used here where the hypodiffusion takes the form of an in-
verse Laplacian operator ∆−1, i.e. δl = −1 in (15), there
is a natural correspondence with radiative relaxation, inso-
far as ∆−1q = ψ (in the case of 2D barotropic flow), and
the hypodiffusion is then also equivalent to a relaxation on
the streamfunction. Thus, as far as midlatitude dynamics is
concerned, hypodiffusion with δl = −1 is a good approx-
imation to radiative relaxation. In the tropics, hypodiffusion
damps vorticity at the same rate as in midlatitudes and there-
fore avoids the build up of low-latitude momentum obtained
with radiative relaxation.

We conclude this section with a consideration of how the
equilibration of the total energy itself varies across all three
forms of dissipation. In Fig. 5 we show the time evolution
of total energy (normalized by energy input rate) for a range
of energy input rates ε0 = (100, 10, 1, 0.1, 0.01) × 10−6,
for the restricted time range 0 ≤ t ≤ 104; the inset shows
the extended time range 0 ≤ t ≤ 105 corresponding to the
cases shown in Fig. 2a and Fig. 4 (ε0 = 0.1 × 10−6). In
all cases, the largest contribution to the energy is from the
zonal wavenumbers (compare bold and light lines) and only
a fraction of the total energy is contained in eddy motion.

For the case of Rayleigh friction, the relation between
total energy and energy input hold to a good approximation
across the full range of input values (4 orders of magnitude).
In the other cases, there is no such relation and the curves do
not collapse. For the case of radiative relaxation, the lack of
equilibration is clear in all cases, although the total (normal-
ized) energy growth is slower when the energy input rate is
larger. As the inset shows, there is still approximately lin-
ear growth out to t = 105, corresponding to the increasing
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FIG. 5. Total kinetic energy normalized by input rate against
time for ε0 = (0.01, 0.1, 1, 10, 100) × 10−6 (increasing dash
lengths from dotted to solid) for each dissipation form: (a) Rayleigh
friction, (b) radiative relaxation, (c) hypodiffusion. Bold lines
denote total energy, light lines denote energy in the “azonal”
wavenumber sector, m > n/5. The inset shows the case ε0 =
0.1 × 10−6 to time t = 105.

equatorial jet seen in Fig. 4a. Finally, for the case of hypo-
diffusion we find that equilibrium is eventually reached in all
cases, but that the time required for this depends on the en-
ergy input rate. For weak energy input the total energy is still
growing with time at t = 10000, whereas for strong energy
input equilibration occurs earlier. The reason for this de-
pendence is the scale selective nature of the dissipation: for
weak energy input it takes longer for the motion to organize
into larger scale flow on which the dissipation can act. Note,
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however, that even in the weak input cases, equilibration still
occurs (see inset).

In conclusion, Rayleigh friction is the most convenient
form of dissipation, in that the total energy is easily determ-
ined, but is more difficult to justify as a dissipation mechan-
ism for the atmospheres of the giant planets. Radiative re-
laxation is the most physically motivated, but increases the
time required to reach equilibrium. In the following we are
interested in equilibrium states and how these depend on the
main physical parameters of the system, for which radiative
relaxation is less suitable. We therefore perform the main
investigation using hypodiffusion, which has similarities to
radiative relaxation in midlatitudes but allows a more rapid
equilibration of the flow at low latitudes.

5. Dependence on ε0 and LD

With the aforementioned sensitivities in mind, we now
proceed to consider how the basic properties of the equilib-
rated flow depend on the physical parameters of the system.
In the following, we present results for the hypodiffusion
case with δl = −1 and νl = 0.01 in (15), and with δ-
correlated forcing, except for occasional, explicitly stated,
comparisons with Rayleigh friction. Having fixed the form
of the forcing and dissipation, the problem is now defined
entirely in terms of the physical parameters LD and Ro, the
latter being controlled through the energy input ε0.

a. Dependence on ε0

We first consider the dependence on the energy injection
rate, ε0, while holding all other quantities fixed. We focus
on the case of large Rossby deformation radius, LD = 10,
for which the system is similar to the 2D barotropic system.
Figure 6 shows the zonal mean zonal velocity for the cases
ε0 = (100, 10, 1, 0.1, 0.01) × 10−6. The most obvious fea-
ture is that the width of the bands decreases with decreasing
ε0. If we assume that the band width should also scale as
nRh, defined as the scale at which anisotropy becomes im-
portant, then the jets present in Fig. 6 are consistent with
(7): increasing ε0 corresponds to reducing 2aΩ/U , hence
reducing nRh. Note again, however, that, unlike the case
when the large-scale dissipation has the form of a Rayleigh
friction, we do not have an a priori estimate of U based on
ε0. Note also that, since the equilibration takes longer at
smaller ε0, the last two calculations have been integrated
out to t = 20000 and t = 40000, respectively (as op-
posed to t = 10000). The longer equilibration time in these
cases arises because the upscale energy cascade is stopped
at higher wavenumbers where the hypodiffusion is weaker.

The simulated jet scale can be quantified by the energy
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FIG. 6. Zonal velocity against latitude for the case LD = 10
and ε0 = (100, 10, 1, 0.1, 0.01) × 10−6, (a)–(e). Color scales are
normalized according to the rms value. In the profiles on the right,
ū is normalized by u0 = 102 ×

√
ε0. Note the extended time scale

in (d) and (e).

centroid, defined as

n0 =

∫

∞

0
nE(n)dn

∫

∞

0
E(n)dn

(16)

where E(n) is the energy spectrum. This roughly corres-
ponds to the peak in the energy spectrum at small n and can
be thought of as representing the largest scales at which en-
ergy accumulates. Table 1 lists the values of Ro = U/2aΩ,
the predicted Rhines scale nRh, and the energy centroid, n0,
at the end of each simulation for different ε0. For nRh we
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ε0 x 106 Ro nRh n0

100  0.0179  3.7  4.7

10  0.0080  5.6  6.6

1  0.0037  8.2  8.8

0.1  0.0016 12.4 13.3

0.01  0.0007 19.3 17.0

TABLE 1. Final Rossby number, predicted Rhines scale,
and final energy centroid for the cases LD = 10 and
ε0 = (100, 10, 1, 0.1, 0.01) × 10−6 (with integrations to t =
10000, 10000, 10000, 20000, 40000 days respectively).

have used (3) as a local Rhines scale together with the ap-
proximation that β = βrms ≡ Ω. The scaling of two quant-
ities n0 and nRh for different values of ε0 are in good agree-
ment over a wide range of Ro. That is, from the velocity
scale U , the Rhines scale nRh provides a good estimate for
the equilibrated energy centroid n0. Further, by fitting to
these data points, we can estimate a power law dependence
between Ro and the energy input rate, Ro ∼ εγ

0
, for which

we obtain γ ≈ 0.36. This yields n0 ∼ ε−0.18
0

, which is in
good agreement with (8), the predicted Rhines scale based
on the upscale energy transfer.

Finally we note that already in the zonal mean velocity
an asymmetry can be discerned between eastward and west-
ward jets, the former being in general somewhat stronger
and narrower than the latter. This is most evident in interme-
diate cases, e.g. ε0 = 10, 1, 0.1× 10−6. This zonal structure
arises naturally from the homogenization of PV into stair-
case structure (Dritschel et al. 2006; Dunkerton and Scott
2006; McIntyre 1982), the sharp eastward jets correspond-
ing to jumps in the PV and the broad zones of westward
flow corresponding to zones of homogenized PV. This struc-
ture will be considered further in section 7 below.

b. Dependence on LD

Next, we consider how the nature of the equilibrated flow
changes as the deformation radius is reduced from LD = 10.
Table 2 illustrates the range of the parameters ε0 and LD

used. For each case we show the quantities α = Ro/L2

D and
the energy centroid n0. We note that we are unable to reduce
LD arbitrarily, since in shallow water deviations of the free
surface become large with increasing Froude number, Fr =
aRo/LD. Because of this, we have been unable to compute
solutions for LD below values of about 0.01, particularly for
cases with larger Ro.

From (7) we do not expect the formation of anisotropic
motion for α ∼> 2. The situation is complicated, however,
by the fact that, although the upscale cascade of total (kin-

ε0 x 106

LD

0.01 0.1 1 10 100

10

1

0.1

0.03

0.01

α = 0.00001
n0 = 17.0

α = 0.0007
n0 = 17.6

α = 0.07
n0 = 18.8

α = 0.6
n0 = 19.7

α = 2.7
n0 = 21.7

α = 0.00002
n0 = 13.3

α = 0.002
n0 = 14.7

α = 0.2
n0 = 16.0

α = 1.5
n0 = 17.5

α = 6.1
n0 = 13.5

α = 0.00004
n0 =  8.8

α = 0.004
n0 =  8.7

α = 0.4
n0 = 10.8

α = 3.3
n0 = 14.1

α = 0.00008
n0 =  6.6

α = 0.009
n0 =  7.0

α = 0.7
n0 =  5.4

α = 0.0002
n0 =  4.7

α = 0.02
n0 =  4.6

α = 2.0
n0 =  2.7

TABLE 2. The dependence of final values of α = Ro/L2

D and
energy centroid n0 on the values of ε0, LD constituting the main
parameter sweep.

etic and potential) energy continues to ever larger scales, the
upscale cascade of kinetic energy will not proceed beyond
LD (Polvani et al. 1994). The forcing here is at a length
scale Lf = a/nf ≈ 0.024, which is greater than our smal-
lest LD, and so in these cases we do not expect any upscale
transfer of kinetic energy. In fact, we do not find that the
equilibrated zonal jet scale depends significantly on LD (see
Table 2). There is a clear dependence of n0 on Ro similar to
that in the previous section, at each LD considered, but for a
give Ro, n0 is approximately uniform in LD.

The influence of LD only becomes apparent when we
consider the latitudinal structure of the zonal velocity field,
shown in Figure 7 for a particular ε0. As LD becomes small
we obtain a clear illustration of the regime discussed recently
by Theiss (2004), where the jets in low latitudes persist but
those in high latitudes disappear, see Fig. 7. This latitudinal
structure is attributed to the latitudinal variation of the local
LD on the sphere. For very small LD, (7) suggests isotropy,
since α = Ro/L2

D is large and nRh is not defined. Accord-
ing to Theiss (2004) we may therefore expect a difference
between equatorial regions, where the local LD, given by
the equatorial deformation radius Le =

√
aLD is larger, and

midlatitude regions, where LD is smaller. We may also ex-
pect that for larger global LD, jets will occur over a wider
latitudinal range. This behavior is demonstrated clearly in
the progression shown in Fig. 7. As predicted, the ban-
ded structure in the zonal mean zonal velocity is confined
to lower latitudes for smaller LD. Note again that the actual
width of the bands themselves varies only weakly with LD.

The way in which the jets initially form at early times
also depends on LD. At large LD jets form first at high
latitudes. As LD decreases and the jets become confined to
low latitudes, the initial jet formation at high latitudes is also
retarded. Again, this is most apparent at small ε0, contrast,
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FIG. 7. Zonal velocity against latitude for the case ε0 = 0.1 ×
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e.g., panels (c) and (d) in Fig. 7.
Finally, we point out that the low-latitude confinement of

the jets is a robust feature arising from the latitudinal vari-
ation of LD, and that it is not an artifact of the particular
form of large-scale dissipation. In Fig. 8 we show the fi-
nal zonal mean velocity profile for simulations the same as
those used to obtain Fig. 7(c-e) but with the hypodiffusion
replaced by Rayleigh friction. All other physical and numer-
ical parameters are identical. Again we find the same low-
latitude confinement as before, with good agreement both of
the jet scales, and the width of the confinement. The former
is explained by the fact that the Rossby numbers are similar
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FIG. 8. As Fig. 7(c-e) right panels, but with hypodiffusion re-
placed by Rayleigh friction (with friction coefficient νl = 10−4).

between the two cases (to within about 25%) and the latter
is consistent with our hypothesis that the confinement is de-
termined by LD. Note that we have also performed a similar
series of calculations in an equivalent barotropic version of
the model in which the latitudinal variation of LD is absent.
In that case no confinement was found: as LD is decreased
there is a transition from a jet-dominated regime to a regime
in which jets are completely absent.

6. Turbulent properties

We next consider some details of the turbulent structure
of the simulations described above. A commonly used dia-
gnostic for this is the kinetic energy spectrum. Here, how-
ever, the energy input wavenumber nf = 42, while for mul-
tiple jet regimes the energy centroid is around n0 = 10 or
larger, which means the range of the inverse energy cascade
is very short. In cases where n0 is smaller (see Table 2) an
approximate power law dependence of E(n) ∼ n−3.2 is ob-
tained in the range [n0, nf ], but for larger n0 no clear scaling
was apparent, even using ensemble calculations. This is the
case, regardless of whether hypodiffusion or Rayleigh fric-
tion is used as large-scale dissipation. The only robust fea-
ture that appears is that the energy contained in the azonal
wavenumbers shows a reasonable n−5/3 dependence in most
cases. In general, however, power spectra for the multiple jet
cases of most interest are not revealing. We therefore focus
instead on the dynamically significant quantity the potential
vorticity, and consider its distribution in physical space.

a. PV staircases

Figure 9 shows the relative and potential vorticity for
the northern hemisphere for cases ε0 = 0.1 × 10−6 and
LD = 0.1, 0.03, and 0.01 (corresponding to Fig. 7c-e).
Zonal jets are identified with bands of vorticity of altern-
ating sign. In the potential vorticity (PV) field, the zonal jets
appear as sharp jumps separating regions of almost zero PV



12 S C O T T & P O L V A N I

FIG. 9. Potential vorticity (a–c) and vorticity (d–f) fields at t = 20000 days for the case ε0 = 0.1 × 10−6 and LD = 0.1, 0.03, 0.01.
Polar Lambert equal area projection. Light values correspond to positive vorticity and high PV. In (a)–(c) the contour interval is 0.03 × 4π
and the highest bold contour is 1.05 × 4π.
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FIG. 10. Zonal mean potential vorticity against latitude for the
case ε0 = 0.1 × 10−6 and LD = 0.1, 0.03, 0.01 (a–c).

gradient, where the corresponding zonal velocity is negat-
ive. The zonal mean PV profile (see Fig. 10) thus resembles
a “staircase” and this structure is a well-known signature of
PV mixing by the small-scale turbulent eddy field (Dritschel
et al. 2006; Dunkerton and Scott 2006; McIntyre 1982). As
a result of this PV structure, the velocity profile exhibits
an east–west asymmetry with strong, narrow eastward jets
at the PV jumps separated by weak, broad westward jets
between the jumps (see e.g. Fig. 6c). We note that in all the

simulations discussed in the preceding sections the presence
of zonal jets is robustly accompanied by a staircase struc-
ture in the PV. The PV staircase is equivalent to a saw-tooth
structure in the relative vorticity, comprising broad regions
of constant vorticity gradient separated by sharp jumps (e.g.
Danilov and Gurarie 2004, for β-plane turbulence).

Fig. 9 also shows how the zonality of the jets weakens
with decreasing LD. For LD = 0.1, the jets are almost per-
fectly zonal at all latitudes. For LD = 0.03, jets at low lat-
itudes are zonal whereas those at high latitudes are increas-
ingly undular. Even poleward of 60◦ however, the PV con-
tours remain intact and encircle the polar cap, despite being
highly distorted. For LD = 0.01, these undular PV contours
are finally broken at high latitudes, and blobs of low PV pen-
etrate all the way into polar regions. PV is mixed across
the polar cap and the flow is largely isotropic poleward of
around 60◦. The strongly zonal jets at large LD or low lat-
itudes stand in contrast contrast to the often meandering or
spiraling jets arising in freely decaying turbulence (e.g. Cho
and Polvani 1996a). Note the presence of a single strong
cyclone at the pole in the cases LD = 0.1 and LD = 0.03
(the prominent white dot in Fig 9a,d).

In Fig. 10c, it can be seen that the PV gradient in midlatit-
udes is negative between jumps. In a barotropic flow such a
PV structure would of course be linearly unstable. However,
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FIG. 11. Potential vorticity and vorticity at t = 10000 days for
the case ε0 = 10 × 10−6 and LD = 10.

we are aware of no rigorous stability criteria for shallow wa-
ter flow on the sphere, so nothing can be said about the sta-
bility of the zonal jets in this case. From the point of view of
PV mixing it is nevertheless surprising that persistent neg-
ative gradients are maintained. The negative gradients can
be seen to arise from coherent vortices situated near 20◦ and
50◦ (Fig. 9c).

Finally, Fig. 11 shows the vorticity for a large Ro case
for which there are no jets in the northern hemisphere (cf.
Fig. 6b). The PV in this case is dominated by a single strong
cyclone at the pole. At midlatitudes, the PV decreases rel-
atively smoothly towards the equator. The PV contours are
also highly undular in this case, reflecting the stronger eddy
activity of the flow. The stronger eddy mixing attempts to
mix PV across the whole hemisphere, preventing the forma-
tion of discrete PV jumps and multiple jets. Yet it is unable
to mix completely and the background planetary vorticity
gradient remains dominant.

b. Cyclone-anticyclone asymmetry
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(c)   ε0 = 1 x 10-6

0 2x104
-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 2x104
-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 2x104
-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 2x104
-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 2x104
-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 2x104
-1

0

1

Sk
[ζ

si
gn

(φ
)]

(d)   ε0 = 0.1 x 10-6

0 4x104

t  [days]

-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 4x104

t  [days]

-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 4x104

t  [days]

-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 4x104

t  [days]

-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 4x104

t  [days]

-1

0

1

Sk
[ζ

si
gn

(φ
)]

0 4x104

t  [days]

-1

0

1

Sk
[ζ

si
gn

(φ
)]

(e)   ε0 = 0.01 x 10-6

FIG. 12. Skewness of the cyclonicity field, ζsgn(φ), as a func-
tion of time for the cases ε0 = (100, 10, 1, 0.1, 0.01) × 10−6

(a–e) and LD = 10, 1, 0.1, 0.03, 0.01 (solid and decreasing dash
lengths). The case LD = 0.01 is absent in (a–c) and the case
LD = 0.03 is absent in (a–b).
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The shallow water system is distinguished from the baro-
tropic or equivalent barotropic systems by the presence of
an asymmetry between cyclonic and anticyclonic vorticity.
As demonstrated by Polvani et al. (1994) and Stegner and
Dritschel (2000), anticyclones tend to be more stable than
cyclones and therefore the evolution of turbulent flow tends
to favor the former. The criterion for the development of
such asymmetry was determined empirically in numerical
simulations of freely decaying shallow water turbulence on
the sphere by Cho and Polvani (1996a) and verified by Iac-
ono et al. (1999a) as approximately Ro/L2

D ∼> 0.13. Both
studies considered the skewness of the cyclonicity defined
as ζsgn(φ). The sgn(φ) is necessary on the sphere since
positive vorticity is cyclonic in one hemisphere and negat-
ive in the other. The vorticity fields shown in Figs 9 and
Fig. 11 also indicate a strong degree of asymmetry between
cyclonic and anticyclonic motions: for example, the single
intense cyclone in polar regions. In Fig. 9c intense coherent
vortices in mid- to high-latitude regions are predominantly
anticyclonic, similar to f -plane shallow water turbulence.

Fig. 12 shows the skewness Sk as a function of time for
all cases listed in Table 2, where

Sk(C) =
〈(C − 〈C〉)3〉

〈(C − 〈C〉)2〉3/2
(17)

and where C = ζsgn(φ) is the cyclonicity. In general, for
large LD, Sk(C) is always positive, that is, cyclones are on
average more intense than anticyclones. This is in contrast
to the freely decaying case where for large LD the skew-
ness tends to be close to zero and there is no asymmetry.
In the forced-dissipative case, the continual injection of en-
strophy appears to accumulate in strong cyclonic polar vor-
tices and midlatitude bands, to a greater extent than is pos-
sible in the freely decaying case. As LD decreases there is
a transition to negative skewness, similar to that observed in
the freely-decaying case. Further, at smaller ε0 the transition
is abrupt, consistent with freely-decaying studies Cho and
Polvani (1996a); Iacono et al. (1999a). The transition co-
incides with the disappearance of the cyclonic polar vortex
and midlatitude bands (cf. Fig. 9).

In summary, the transition between symmetric and asym-
metric evolution is similar to the freely-decaying case with
the difference that at large LD the flow is predominantly
cyclonic, rather than purely symmetric. The transition to
predominantly anticyclonic flow only occurs at small Ro,
at least within the parameter range consistent with the shal-
low water approximation, consistent with the freely decay-
ing case (Cho and Polvani 1996a).

7. Relevance to planetary atmospheres

Having explored the full parameter space in a general
context, we return to the circulation of the giant planets.
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FIG. 13. Zonal mean zonal velocity against latitude for three
simulations with planetary parameters: (a) Jupiter (Ro = 0.002,
LD = 0.025); (b) Saturn (Ro = 0.013, LD = 0.025); (c) Ur-
anus/Neptune (Ro = 0.06, LD = 0.1).

We present results from three simulations, using paramet-
ers similar to those estimated for the giant planets (values
taken from Cho and Polvani 1996b): Jupiter (Ro = 0.002,
LD = 0.025); Saturn (Ro = 0.013, LD = 0.025); Ur-
anus/Neptune (Ro = 0.06, LD = 0.1). The zonal mean
velocity profiles are shown in Fig. 13 and the PV and vorti-
city is shown in Fig. 14. The magnitudes of the zonal mean
velocity profiles are comparable to those of the planets. Fur-
ther, the magnitude of the equatorial flow is larger than that
of midlatitude flow, in common with all four planets. How-
ever, the simulated equatorial flow is always retrograde, as in
Cho and Polvani (1996b), whereas it is prograde on Jupiter
and Saturn. Therefore, while the forced calculations are in
agreement with some aspects of the planetary circulations,
they do not appear to improve on the main shortcomings of
the freely decaying model.

The vorticity and potential vorticity plots illustrate strong
mixing over the equatorial regions in all cases. In midlat-
itudes the flow is more undular than on the planets, for ex-
ample at 30◦S in the Jupiter case. In the Saturn case, intense
anticyclones are visible in midlatitudes, which dominate any
jet structure poleward of the prograde jets at ±20◦. Intense
anticyclones are a feature of the atmospheres of both Jupiter
and Saturn. In the Uranus/Neptune case, the potential vorti-
city is well mixed all the way out to ±45◦, where there are
symmetric prograde jets, which are highly zonal.

In section 5, equatorial confinement was found to occur
for LD below around 0.03. Consistent with this, the jets in
the Jupiter and Saturn simulations are also restricted in latit-
ude and the equatorial flow is considerably stronger than that
at higher latitudes. However, we have found that at all LD

for which there is equatorial confinement, the equatorial flow
is retrograde while prograde equatorial jets only occur at lar-
ger LD [in the barotropic system, LD → ∞, prograde and
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FIG. 14. Potential vorticity (a–c) and vorticity (d–f) for the three simulations with planetary parameters.

retrograde jets appear with equal likelihood (Dunkerton and
Scott 2006)]. Further, as LD decreases the zonal jets at high
latitudes become increasingly undular. In contrast, jets on
the giant planets appear remarkably zonal even at high latit-
udes. Thus it does not appear that low-latitude confinement
due to small LD is the reason for the stronger equatorial flow
of the giant planets.

From Figs 13 and 14 it appears that adding a spatially
uniform, homogeneous forcing does not change significantly
the key features that emerge in the freely decaying calcula-
tions of Cho and Polvani (1996b), notably the uniformly ret-
rograde jets at the equator. In another article in this special
issue Showman (2006) presents shallow water calculations
representative of the Jovian atmosphere, using a model of
thermal convection as small-scale forcing and radiative re-
laxation as large-scale dissipation. As in the present case,
Showman finds retrograde equatorial jets and jet dominated
flow restricted to low latitudes for LD comparable to the
Jovian value. The two sets of calculations appear to be fully
consistent with each other, and suggest that some other phys-
ical processes, beyond those contained in the shallow water
system, may be needed to capture the main features of the
giant planets.

In section 4, it was seen that when the large-scale dis-
sipation takes the form of a radiative relaxation, zonal mo-
mentum can accumulate in the tropics to a greater extent than

in the extratropics, resulting in a stronger equatorial jet. At
large LD the jet can also be prograde (Fig. 4a). One ques-
tion, therefore is whether the jet structure may be governed
by a larger LD than that relevant to the coherent vortices
from which estimates of the planetary values of LD have
been made. This would be the case, for example, if the jets
were much deeper than the vortices, as suggested by the Ga-
lileo probe (Atkinson et al. 1999), since the deformation ra-
dius relevant to shallower structures is that based on higher
modes of the vertical structure equation. In fact, preliminary
calculations suggest that radiative relaxation can also give
rise to prograde equatorial jets even at smaller LD, and a
more complete investigation of this form of dissipation is
currently underway.

8. Summary and Conclusions

Across a wide range of physical and numerical paramet-
ers persistent zonal jets appear as a robust feature of the
forced-dissipative shallow water system in spherical geo-
metry. To a good approximation the energy centroid (a
measure of the jet scale) in the barotropic limit satisfies the
power law dependence n0 ∼ ε−1/5 suggested by Maltrud
and Vallis (1991). The variation of the jet scale with de-
formation radius is in general much weaker. In all cases the
jet structure is accompanied by a latitudinal staircase pro-
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file in the PV indicating that the dynamics arises as a result
of eddy mixing. While both prograde and retrograde equat-
orial jets are found to emerge at large deformation radius,
only retrograde equatorial jets emerge at small deformation
radius.

Our simulations provide a clear demonstration in full
spherical geometry of the new regime proposed recently by
Theiss (2004), where the zonal jet structure is confined to
low latitudes at small deformation radius. Because of the
dependence on LD, this regime has not been observed in the
spherical barotropic system. Independent work by the au-
thors using an ad hoc equivalent barotropic model in spher-
ical geometry (where LD is independent of latitude) also
showed no low-latitude confinement, supporting the claim
that the regime arises because of the latitudinal variation of
LD. The arguments in Theiss (2004) provide a simple phys-
ical motivation of the equatorial confinement, whereby the
Rhines effect is suppressed at high latitudes because of the
small local LD, but is not suppressed at low latitudes be-
cause the local, equatorial deformation radius is larger. A
suggestion of the same low-latitude confinement is apparent
in earlier simulations of freely-decaying shallow water tur-
bulence on the sphere (Cho and Polvani 1996a; Iacono et al.
1999b), although it was not reported as such. Here, the con-
finement was robustly obtained for both Rayleigh friction
and hypodiffusion as large-scale dissipation, as well as for
different forcing forms and numerical resolution.

Cyclone-anticyclone asymmetry was also observed in the
forced-dissipative shallow water system. Unlike the freely
decaying case, at large LD the skewness of the cyclonicity
is positive at all Rossby numbers considered indicating more
intense cyclonic eddies. This result is consistent with the β-
drift of vortices, where cyclonic vortices tend to drift pole-
ward and anticyclonic vortices tend to drift equatorward.
As LD decreases, however, shallow water dynamics departs
from equivalent barotropic dynamics and favors anticyclonic
vorticity, consistent with the freely decaying case (Cho and
Polvani 1996a). More intense anticyclones were also ob-
served in the small LD cases presented here, particularly in
polar regions.

Although the zonal jets obtained here are in general
quasi-steady, the degree of steadiness depends on the bal-
ance between forcing and dissipation. For a given total en-
ergy, it was shown that the steadiness of the jets decreases
with increasing forcing and dissipation magnitude. On the
other hand, the steadiness is independent of the form of the
large-scale dissipation. A more physically relevant dissip-
ation operator, representing radiative relaxation, was also
considered. In this case, the evolution was characterized by
the development of strong equatorial jets, a consequence of
the weak constraint of radiative relaxation on angular mo-
mentum at low latitudes.

Returning to the application to the giant planets we con-

clude that the inclusion of homogeneous, isotropic forcing
in the shallow water system is still insufficient to explain all
of the observed features of those atmospheres. The main ad-
vantage over the freely decaying case considered by Cho &
Polvani may be simply that the jet structure is more clearly
defined. At small LD, the equatorial jet is still consist-
ently retrograde, at least when hypodiffusion or Rayleigh
friction is used as large-scale dissipation, and the high lat-
itude flow is more undular than is observed on Jupiter and
Saturn. However, with regard to the forcing and dissipation,
the present study is far from exhaustive and it may still turn
out that very specific choices of these are needed to fully
replicate the planetary features.
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