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Abstract

Ensemble experiments of decaying shallow-water turbulence on a rotating sphere

are performed to confirm the robustness of emergence of an equatorial jet. While

previous studies have reported that the equatorial jets emerging in shallow-water tur-

bulence are always retrograde, predominance of a prograde jet, although less likely,

was also found in the present ensemble experiments. Furthermore, a zonal-mean flow

induced by wave-wave interactions was examined using a weak nonlinear model to

investigate the acceleration mechanisms of the equatorial jet. The second-order accel-

eration is induced by the Rossby and mixed Rossby-gravity waves and its mechanisms

can be categorized into two types. First, the local meridional wavenumber of a Rossby

wave packet propagating toward the equator increases due to meridional variation of

the Rossby deformation radius and/or the retrograde zonal-mean flow, resulting in a

dissipation of the wave packet in the equatorial region. This mechanism always con-

tributes to retrograde acceleration of an equatorial jet. Another mechanism is derived

from the tilting of equatorial waves due to meridional shear of the zonal-mean flow.

In this case, zonal-mean flow acceleration contributes to the intensification of a given

basic flow.
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1. Introduction

It is known that two-dimensional turbulence possesses different aspects from three-dimensional

turbulence. Unlike 3D turbulence, vortices of the same sign tend to merge and spontaneously form

a larger flow structure in 2D turbulence (Lilly 1969; McWilliams 1984). Since quasi-geostrophic

turbulence, which is approximately valid in atmospheric motions on synoptic scales, is analogous

to 2D turbulence (Charney 1971), knowledge for 2D turbulence on a rotating plane provides the

fundamentals for examining large-scale structures of atmospheric motions. 2D turbulence and its

rotational effects have been studied to investigate the nonlinear dynamics in the atmosphere and

ocean by many authors.

Rhines (1975) firstly found that a zonal structure spontaneously becomes dominant in 2D

turbulence on aβ plane. The meridional scale of the zonal jet is characterized by the scale

Lβ =
√

2U0/β (U0: a representative velocity) called the Rhines scale, in which the order be-

tween the linear and nonlinear terms is comparable. His pioneering study has motivated studies of

rotating 2D turbulence as a problem of pattern formation. Vallis and Maltrud (1993) showed that

the wave-turbulence boundary in wavenumber space has the smallest meridional wavenumber at

thekx = 0 axis (kx: zonal wavenumber) due to the anisotropy of the frequency of Rossby waves

and elucidated the mechanism for the predominance of zonally elongated structures, and their the-

ory is extended to spherical geometry (Nozawa and Yoden 1997; Hayashi et al. 2000; Huang et al.

2001). Williams (1978) performed numerical simulations of forced 2D turbulence in a spherical

geometry as a conceptual model in order to investigate the formation mechanisms for the band

structure observed in the Jovian atmosphere and succeeded in reproducing alternative zonal jets.

However, in his experiment, longitudinal periodicity and equatorial symmetry were assumed due

to restrictions on the available computational resources. Yoden and Yamada (1993) conducted
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numerical experiments of decaying 2D turbulence on a rotating sphere using a model covering a

full spherical domain. They found that a retrograde circumpolar vortex emerges at high planetary

rotation speeds, and that it is a robust feature in 2D turbulence on a rotating sphere that appears

independently of the initial state.

The shallow-water equations are commonly adopted as the simplest model for considering the

effects of divergence (Farge and Sadourny 1989; Yuan and Hamilton 1994). Cho and Polvani

(1996) performed numerical experiments of shallow-water turbulence on a rotating sphere and

found that a characteristic flow pattern emerges in shallow-water turbulence that is remarkably

different from that in 2D nondivergent turbulence. In particular, an equatorial jet appears due to

the effects of planetary rotation, instead of a polar jet which is dominant in 2D turbulence. They

investigated the dependence of the magnitude and width of the equatorial jet on planetary rotation

and on the Rossby deformation radius. They concluded that the equatorial jet becomes stronger and

narrower with decreasing deformation radius and that its direction is always retrograde. However,

they did not examine the robustness of these conclusions using various initial fields, and it still

remains to be seen how much the direction and amplitude of the equatorial jet depend on the initial

field. Moreover, they discussed neither what the formation and sustaining mechanisms may be

nor why only a retrograde jet appears. Although Iacono et al. (1999) attributed the predominance

of a retrograde jet to asymmetry between a cyclone and anticyclone in the shallow-water system,

their interpretation seems insufficient for understanding why a retrograde jet concentrates in the

equatorial region. While the cyclone-anticyclone asymmetry is more remarkable at higher latitudes

where the Rossby numbers are smaller, the concentration of vorticity skewness in the equatorial

region is more important for the generation of a retrograde equatorial jet.

As mentioned above, the issue of understanding the predominance of an equatorial jet in
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shallow-water turbulence still remains. First, we will focus on the equatorial jet emerging in a

decaying shallow-water turbulence on a rotating sphere; ensemble experiments with various initial

states are performed and dependence of direction and magnitude of the equatorial jet on the initial

state is investigated in order to confirm the robustness of the results reported by Cho and Polvani

(1996). Second, we will examine the acceleration of a zonal-mean flow induced by wave-wave

interactions with a linearized shallow-water model and discuss whether or not the formation and

sustaining mechanisms of the equatorial jet obtained in the full nonlinear model can be explained

in terms of the weak nonlinear framework.

This paper is organized as follows. In Section 2, ensemble experiments using the full nonlinear

model will be described. The distribution of magnitude of a zonal flow at the equator will be used to

investigate the dependency on initial states. We will discuss what characterizes the magnitude and

width of an equatorial jet in a quasi-equilibrium state. Section 3 will describe the jet acceleration

induced by waves and the acceleration mechanisms in terms of the weak nonlinear framework.

Our concluding remarks will be given in Section 4.

2. Ensemble experiments using the full nonlinear model

2a. Model description

A set of shallow-water equation on a sphere is described in nondimensional form as follows:

∂ζ

∂t
= − 1

1 − µ2

[
∂

∂λ
(f + ζ) U + (1 − µ2)

∂

∂µ
(f + ζ) V

]
+ ν2p(−1)p+1∆pζ, (1)

∂D

∂t
=

1

1 − µ2

[
∂

∂λ
(f + ζ) V − (1 − µ2)

∂

∂µ
(f + ζ) U

]

−∆

(
Φ′

Fr2 +
U2 + V 2

2(1 − µ2)

)
+ ν2p(−1)p+1∆pD, (2)
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∂Φ′

∂t
= − 1

1 − µ2

[
∂

∂λ
(UΦ′) + (1 − µ2)

∂

∂µ
(V Φ′)

]
− D + ν2p(−1)p+1∆pΦ′, (3)

whereλ is the longitude,µ(= sin θ) the sine latitude,t time,p the order of hyperviscosity,ν2p the

hyperviscosity coefficient,f(= µ/Ro) nondimensional planetary vorticity,∆ horizontal Lapla-

cian, ζ the vertical component of vorticity,D horizontal divergence,Φ′ geopotential anomaly,

and (U, V ) = (u, v)
√

1 − µ2 (u and v are zonal and meridional velocity components, respec-

tively). These equations are characterized by the two nondimensional parameters: Rossby number

Ro = U0/2aΩ and Froude numberFr = U0/
√

Φ0. Here,U0 is the representative velocity scale,a

the radius of the sphere,Ω the planetary angular velocity, andΦ0 the mean value of geopotential.

No forcing term is included in the equations, because our focus is on decaying turbulence in the

present study. It should be noted that the Rossby deformation radiusLD(µ) is expressed using

Rossby and Froude numbers as

LD(µ) =

√
Φ0

2Ω|µ|
=

Ro

Fr

a

|µ|
. (4)

To perform numerical experiments, the dependent variables are expanded by spherical har-

monicsY m
n (λ, µ), and the pseudospectral method is adopted to calculate the nonlinear terms in

Eqs. (1)-(3). The numerical model resolution is512 × 256 grids in the longitudinal and lati-

tudinal directions and the triangular truncation wavenumber is 170, which is determined by the

no-aliasing condition in evaluating the nonlinear terms. A fourth-order Runge-Kutta scheme is

used for time integration. Although a leapfrog scheme is often adopted in many studies (e.g. Cho

and Polvani 1996), it may be disadvantageous for the proper treatment of fast frequency modes

like gravity modes. By using the Runge-Kutta scheme, the disadvantages arising in the treatment

of gravity waves in time integration schemes can be avoided. Moreover, explicit timestepping is
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adopted since implicit timestepping artificially slows down gravity wave speeds and may not pre-

serve wave-mean flow interactions. The order of hyperviscosity and its coefficient are set using

values ofp = 4 andν2p = 3.0 × 10−17, respectively.

The initial field is composed of vorticity only, and its power spectrum is assumed to be the

same distribution function as that used by Cho and Polvani (1996),

En(t = 0) =
Anγ/2

(n + n0)γ
, En =

n∑
m=−n

|ζm
n |2

2n(n + 1)
. (5)

The phase of each mode is randomly determined. The vorticity skewness in the initial field is

not assumed to be exactly zero, but still vanishingly small, and asymmetry between cyclones and

anticyclones can be ignored in the initial state. Equation (5) can be regarded as the initial energy

spectrum since divergence and geopotential are both zero in the initial state. However, it should be

noted that the energy spectrum in the quadratic terms of the expansion coefficients cannot be pre-

cisely formulated because the general expression of energy in shallow water is not quadratic (Farge

and Sadourny 1989). A constantA is determined so that the initial total energyE =
∑N

n=2 En

equals1/2 (i.e. the representative velocity scaleU0 =
√

2E is unity). Parametersn0 andγ charac-

terize the peak wavenumber and width, respectively, in the distribution of the power spectrum and

are set to be{n0, γ} = {40, 40} throughout the experiments. In this study, we examine only the

range of parameters for which the scale of the initial vortices is not overly larger than the Rossby

deformation radius at the poles,(Ro/Fr)a. The selection of this scale has two meanings. First, the

avoidance of gravity wave radiation in the initial geostrophic adjustment is important since the ini-

tial field in our experiments is not balanced, unlike the setup by Cho and Polvani (1996). The ratio

of gravity modes included in the initial field is less than 2 % in the parameter range we examined,

and our preliminary experiments with the initial field satisfying gradient-wind balance indicate that
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the initial balance does not have crucial effects on the statistical features seen in the equilibrium

state in our parameter range. Second, a jet scale in an equilibrium state may be directly controlled

by the scale of initial vortices, if the scale of vortices is much larger than the deformation radius. In

shallow-water turbulence, vortices larger than the deformation radius cease to merge (Polvani et al.

1989), and upscale energy cascade is suppressed. The occurrence of an upscale energy cascade is

considered to be necessary for investigating the determining factor of the meridional scale of an

equatorial jet.

In the standard experiments, we focus on ensemble experiments for Ro= 0.01, 0.02 and

0.03, using a fixed Froude number Fr= 0.3, where the effects of divergence strongly appears.

The number of ensemble members is 125 for Ro= 0.01, 0.02 and 1000 for Ro= 0.03. Time

integrations are halted att = 15, where flow fields are close to an equilibrium state. This parameter

range is limited and cannot be applied to the terrestrial atmosphere and gas giants. The purpose of

our study is to examine the robustness of the retrograde equatorial jet on shallow-water turbulence

rather than to explore a wide parameter range. Time is scaled witha/U0 = 1day/(4πRo), which

is identical to the scaling in Cho and Polvani (1996), so thatt = 15 corresponds to 119 planetary

rotations forRo = 0.01 and 39.8 forRo = 0.03.

2b. Results

[Figure 1 about here.]

Figure 1 shows histograms of a zonal-mean zonal flow at the equator att = 5 and15. The

distribution of the histogram is almost symmetric att = 5 and the variance of the histogram is

similar among the parameter sets examined in our experiments. This implies that an equatorial

flow formed by an initial mixing process is not biased in the direction of the equatorial zonal
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flow and is strongly dependent on the initial distribution of vortices rather than on nondimensional

parameters. On the other hand, the distribution of the histogram shifts to the negative (retrograde)

side with time, and this tendency is more pronounced for smaller Rossby numbers. In particular,

an equatorial flow is retrograde in all the cases forRo = 0.01. This result is consistent with Cho

and Polvani (1996). However, an equatorial prograde flow dependent on the initial field can also

exist for Ro = 0.02 and0.03, and the probability of emergence of the prograde flow increases

with increasing Rossby number. It should be noted that the number of the members, where〈u〉 (〈·〉

denotes longitudinal average) is over 0.5, increases with elapsed time in evolution forRo = 0.03.

This result suggests the existence of acceleration of a prograde flow as well as a retrograde one.

[Figure 2 about here.]

In order to verify the persistence of the equatorial prograde flow appearing forRo = 0.03, time

integration is performed untilt = 50 for 50 ensemble members for which prograde flow has been

confirmed. Figure 2 shows histograms of the equatorial zonal flow with these ensemble members

at t = 15 and50. Although the distribution of the histogram broadens with time, and the number

of prograde jets decreases betweent = 15 andt = 50, there are ensemble members for which a

prograde flow remains. This result suggests that an equatorial prograde flow can spontaneously

emerge and remain without experiencing decrease in its velocity even after sufficiently long time

integration.

[Figure 3 about here.]

As the zonal-mean zonal flow is evaluated at only one latitudinal point in Fig. 1, it is necessary

to confirm whether the equatorial zonal flow has a jet shape which characteristically appears as a

zonally elongated rapid flow concentrated in a narrow region. The zonal-mean zonal flow, vorticity,
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and geopotential anomaly att = 15 are shown for the ensemble member producing the strongest

flow at the equator in Fig. 3. A remarkable jet shape is seen in both retrograde and prograde

cases. In particular, the predominance of a prograde jet seen in Fig. 3(b) has not been observed

in previous studies and its presence indicates that the conclusion presented in Cho and Polvani

(1996), that the direction of the equatorial jet is always retrograde, does not exactly apply for our

parameter range. However, the probability for the emergence of a prograde jet is small, as is shown

in Fig. 1. We calculate an asymmetry index introduced by Iacono et al. (1999) in order to examine

the relationship between an equatorial zonal flow and vorticity skewness. Figure 4 presents the

time evolution of the asymmetry index and the zonal flow at the equator for the case shown in Fig.

3(b). Although the equatorial flow is always prograde, the sign of the asymmetry index changes at

t ∼ 40. This may be due to the fact that vorticity skewness is largely dependent on the asymmetry

of coherent vortices appearing at high latitudes, while the magnitude of the equatorial flow is

determined by the vorticity within the jet region. This simple example suggests that vorticity

skewness evaluated over the sphere is not useful in making an analysis on the magnitude of an

equatorial jet.

[Figure 4 about here.]

Potential vorticity (PV) fields, which correspond to retrograde and prograde jets, are shown in

Fig. 5. While coherent vortices are found at mid- and high latitudes, a dominant zonal structure is

present in the equatorial region where a jet appears, and PV mixing on either side of the prograde jet

and homogenization thoroughly occur. However, there is a difference in the latitudinal distribution

of PV between the retrograde and prograde cases. When a retrograde jet emerges, positive and

negative PV anomalies appear in the northern and southern regions of the equator, respectively,

and PV homogenization occurs across the equator. On the other hand, in the prograde case, the
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PV anomaly is positive (negative) in the northern (southern) region, and PV gradient increases at

the equator. Namely, the direction of the equatorial jet corresponds to the distribution of the region

where PV homogenization in retrograde regions occurs.

[Figure 5 about here.]

Returning to Fig. 3, we may note the width of the equatorial jet. The meridional profile of

the zonally-uniform (the zonal wavenumberm is zero) Rossby mode with the lowest meridional

wavenumber (l = 1) is drawn in Fig. 3 for comparison, but the geopotential anomaly is derived

from the gradient wind balance to satisfy the steady state in Eqs. (1)–(3). Here, the structure

of each of the zonally-uniform Rossby modes is defined as the eigenmode in them → 0 limit,

since the eigenmodes of the shallow-water equations (the Hough modes) have the degenerate zero

frequency modes form = 0. This treatment is reasonable because it has been proven that the

eigenmodes calculated in such a way are consistent with the structure of the Rossby and Kelvin

modes form 6= 0 (Shigehisa 1983). The zonal-mean flow structure and the width of the equatorial

jet coincide well with those of the Rossby mode having the lowest meridional wavenumber. This

result suggests that the width of the equatorial jet can be characterized by the Rossby deformation

radius at the equatorLD(eq.) ≡ (
√

Φ0/β)1/2, since the meridional structures of the equatorial waves

are determined byLD(eq.) (Matsuno 1966).

If the scale of the jet is determined byLD(eq.), as is seen in Fig. 3, we can estimate the upper

limit of the jet magnitude with the Rossby mode forl = 1,m → 0. We assume that the upper limit

of the jet magnitude is determined by the largest magnitude of the Rossby mode such that there

is no negative PV gradient region, since a negative PV gradient state cannot be maintained due to

barotropic instability. Under this assumption, we obtain the range of the possible jet magnitude

as−1.45 < 〈u〉 < 1.72 for {Ro, Fr} = {0.01, 0.3} and−1.49 < 〈u〉 < 1.70 for {Ro, Fr} =
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{0.03, 0.3}. The magnitude of the equatorial zonal flow is within this range for all the ensemble

members (Fig. 1).

3. Acceleration of a jet induced by waves

3a. Objectives

In the previous section, we have seen that both the retrograde and prograde equatorial jets can

be spontaneously dominant in shallow-water turbulence. The principal purpose of this section

is to examine the acceleration mechanisms of the equatorial jet. Two kinds of mechanisms for

zonal-mean flow acceleration are commonly proposed: (i) PV mixing and homogenization due to

turbulent motion and (ii) wave-wave interactions. In the section below, we will discuss the role of

each mechanism in equatorial jet formation independently, although both mechanisms can coexist

in rotating shallow-water.

The concept of the zonal flow formation due to PV homogenization is applied to many prob-

lems (Rhines 1977; Rhines and Holland 1979; McIntyre 1982; Rhines 1994). In the barotropic

case, PV homogenization process is more predominant in the higher latitude, where the effect of

the linear process is smaller due to the larger Rhines scale. On the other hand, for theLD/a ¿ 1

case treated in our experiments, this concept can be applied to shallow-water turbulence in the fol-

lowing manner. While coherent vortices hardly interact and turbulent mixing is inactive in the mid-

and high latitudes because of the small deformation radius, PV homogenization is more active in

the equatorial region where the deformation radius is larger compared to high latitudes where the

Rhines scale is larger. We can speculate two configurations for PV homogenization in the equato-

rial region (Fig. 6). While the occurrence of PV homogenization across the equator corresponds to
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a retrograde jet, a PV edge at the equator yields a prograde one. The PV inversion procedure, when

a gradient wind balance is assumed, gives the meridional profile of the zonal flow as the steady

state. The zonal-mean PV distribution tends to have a uniform zone with sharp gradients at the

south and north edges only in the equatorial region. On the other hand, if initial mixing makes a

prograde flow, PV gradient is greater on the equator and smaller in a strip off the equator. In such

cases, it is expected that PV homogenization should be facilitated in the strip off the equator. The

configuration realized depends on the initial condition. As the PV gradient increases, the restoring

force in the meridional direction is intensified and nonlinear advection is relatively suppressed.

As a result, the PV edge forms a barrier against a Lagrangian motion across the edge, and the

equatorial jet can be sustained without meridional momentum transfer by waves.

[Figure 6 about here.]

This idea surely elucidates that a equatorial jet profile is sustained in cases where a strong jet

appears, and the relationship between the zonal velocity and the PV is consistent with the results

of the previous section (Fig. 3, 5). However, it appears to be insufficient for understanding the

statisticaldistribution of the equatorial jet magnitude (Fig. 1). While the above argument suggests

that the collapse of a uniform PV zone and its edges formed in the initial stage would not occur

from subsequent PV homogenization process, the histogram shown in Fig. 1 shifts wholly in the

retrograde direction, even when a prograde flow is formed in the initial stage. To understand the

statistical distribution of the equatorial flow, we should also explore the other candidate for the jet

acceleration mechanism; the zonal-mean flow acceleration induced by wave-wave interactions.

The acceleration mechanism by waves is based on the conservation law of pseudo-angular

momentum. When pseudo-angular momentum of a wave is lost, it gives rise to zonal flow accel-

eration. Hayashi et al. (2000) applied this theory to 2D nondivergent turbulence and examined
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whether retrograde acceleration in a polar jet induced by waves is consistent with that of a weak-

nonlinear model. A similar approach in a shallow-water system on the spherical geometry was also

taken to investigate zonal-mean flow acceleration due to shear instability (Iga and Matsuda 2005).

According to their formulation, we examine the acceleration of a zonal flow in shallow-water tur-

bulence using a weak nonlinear model.

3b. Model description

To construct a set of weak nonlinear equations, the dependent variables are expanded around a

zonally uniform basic flow following Hayashi et al. (2000). We suppose that the deviation field

can be expanded into a series of amplitudes with a small parameterε ¿ 1, as:

ζ = ζ0(µ) + εζ1(λ, µ, t) + ε2ζ2(µ, t) + O(ε3),

D = εD1(λ, µ, t) + ε2D2(µ, t) + O(ε3),

Φ = Φ0(µ) + εΦ1(λ, µ, t) + ε2Φ2(µ, t) + O(ε3).

Here, the subscript represents the order of magnitude of disturbance. The zeroth order of the

variables represents a given basic state and the second order is assumed to be zonally uniform.

It should be noted that there is no zeroth divergence term, because the divergent component in a

steady state vanishes in the shallow-water equations. If the equations are satisfied for an arbitrary

small parameterε, the deviation field must balance in each power ofε. Substituting the above

into the shallow-water equation (1)–(3) and the same order collection with respect toε yields the
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first-order linear equations,

∂ζ1

∂t
= − 1

1 − µ2

[
∂

∂λ
{(f + ζ0) U1 + ζ1U0} + (1 − µ2)

∂

∂µ
{(f + ζ0) V1}

]
+ dζ1 , (6)

∂D1

∂t
=

1

1 − µ2

[
∂

∂λ
{(f + ζ0) V1} − (1 − µ2)

∂

∂µ
{(f + ζ0) U1 + ζ1U0}

]

−∆

(
Φ1

Fr2 +
U0U1

1 − µ2

)
+ dD1 , (7)

∂Φ1

∂t
= − 1

1 − µ2

[
∂

∂λ
(U0Φ1 + U1Φ0) + (1 − µ2)

∂

∂µ
(V1Φ0)

]
− D1 + dΦ1 , (8)

and the second-order equations,

∂ζ2

∂t
= − ∂

∂µ
[(f + ζ0) V2 + 〈ζ1V1〉] , (9)

∂D2

∂t
= − ∂

∂µ
[(f + ζ0) U2 + 〈ζ1U1〉 + ζ2U0] − ∆

(
Φ2

Fr2 +
〈U2

1 + V 2
1 〉 + U0U2

2(1 − µ2)

)
, (10)

∂Φ2

∂t
= − ∂

∂µ
(〈V1Φ1〉 + V2Φ0) − D2. (11)

Here, the termdζ1,D1,Φ1 represents the effect of wave dissipation, which gives rise to the second-

order acceleration in respect to the small parameterε. In these experiments, the same dissipation

form as the full nonlinear model is assumed. It should be noted that Hayashi et al. (2000) assumed

that the second-order acceleration is replaced by the acceleration of the basic field in their formula-

tion (the LHS terms in (9)–(11) are replaced by time deviation of the zeroth-order variables). Since

we do not adopt their assumption, the waves represented by the first order are not modified by the

second-order variables.

In the present experiments, Eqs. (6)–(11) are integrated from the initial field which is identical

to the eddy field (removing zonal-mean components) att = 5 calculated by the full nonlinear

model described in the previous section. We use three datasets for the initial field:
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1. 125 members, which are identical to those used in the full nonlinear experiments forRo =

0.01, Fr = 0.3.

2. 50 members where a prograde jet appears in the nonlinear experiments forRo = 0.03, Fr =

0.3 (hereafter referred to as a prograde dataset).

3. 50 members where a retrograde jet appears in the nonlinear experiments forRo = 0.03, Fr =

0.3 (a retrograde dataset).

For each dataset, we examine three types of basic fields: no basic flow, a prograde equatorial

jet, and a retrograde equatorial jet. The zonal flow profile of the basic field is assumed to be the

vorticity field of the Rossby mode withl = 1, m = 0, and the geopotential field is determined

by gradient wind balance so that the given basic field is steady. It can be seen from the previous

section that this profile is a reasonable idealization. The magnitude of the equatorial jet peak is set

to be 0.5 throughout the experiments.

All wave components can be decomposed into Rossby and gravity modes based on the Hough

mode expansion, and contributions to the second order acceleration can be divided into two parts;

one is from the products of two-Rossby modes, the other from the products of two gravity modes

or those of one-Rossby and one-gravity modes. For simplicity, all westward-propagating mixed

Rossby-gravity (MRG) modes are categorized into Rossby modes.

3c. Results

[Figure 7 about here.]

First, acceleration of the zonal flow due to wave-wave interactions without a basic flow is ex-

amined, and results are presented in Fig. 7. In the left panels, acceleration defined as〈u(t =
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15)〉 − 〈u(t = 5)〉 obtained from the full nonlinear experiments is shown for comparison. Accel-

eration in the full nonlinear experiments concentrates in the equatorial region and its variance is

small. In the prograde cases, zonal flow acceleration intensifying a prograde flow occurs, but it

is much smaller than that seen in the retrograde cases. This implies that the acceleration mecha-

nism in the prograde direction certainly exists, but that its effects are much smaller compared to

the acceleration in the retrograde direction. In all of the weak nonlinear experiments, the Rossby

modes are almost the sole contributing factor to second-order acceleration, and contribution from

the gravity modes can be ignored. ForRo = 0.01, acceleration in the retrograde direction is clearly

seen in the weak nonlinear experiment as well as the full nonlinear one and is quantitatively consis-

tent. On the other hand, zonal flow acceleration induced by waves is weak and always retrograde

for Ro = 0.03. There is little difference between the prograde and retrograde datasets. Namely,

the results show that the direction of zonal flow acceleration in the weak nonlinear framework is

independent of the initial configuration of eddies. This second-order acceleration is clearly incon-

sistent in the prograde dataset and much weaker than the acceleration obtained in the full nonlinear

experiments, even for the retrograde ones. Regardless of which dataset is used, these results can-

not explain the acceleration of the equatorial jet obtained in the full nonlinear experiments for

Ro = 0.03. It should be noted that the variance in the mid-latitudes is large due to the dispersion

of coherent vortices, which exist stably in the full nonlinear model, giving rise to artificial transport

of pseudo-angular momentum in the weak nonlinear model. For this reason, the results in the mid-

and high-latitudes have low reliability.

[Figure 8 about here.]

Second, the results with a basic flow are shown in Fig. 8. Although deformation of an initial

Rossby wave due to the basic flow may generate a gravity wave andvice versa, it must be pointed
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out that our decomposition of contribution to the second-order acceleration does not take this

effect into account. Since the Hough mode decomposition is performed in the initial state only,

contribution from gravity modes generated during time evolution is also included in the left panels

of Fig. 8.

For Ro = 0.01, the second-order acceleration is always retrograde and has two peaks. These

features are especially remarkable in the experiment with a retrograde jet. As will be discussed in

the next subsection, these accelerations may be regarded as the result of the absorption of Rossby

waves at critical latitudes. It should be noted that such a zonal-mean flow profile cannot be realized

in the nonlinear framework, since barotropic instability occurs and deforms the zonal-mean flows,

resulting in decreased latitudinal shear. The results forRo = 0.03 are quite different from those for

Ro = 0.01. The second-order acceleration works as a positive feedback for the given basic flow at

the equator. This tendency is similar to that seen for the retrograde dataset (not shown). Namely,

it is the basic flow profile rather than the eddies in the initial state which control the direction of

acceleration at the equator. These results suggest that both directions of the equatorial jet can be

intensified and sustained, as opposed to theRo = 0.01 cases, if there is an equatorial jet in the

initial state.

[Figure 9 about here.]

Furthermore, we have extracted westward propagating MRG waves only from the initial dis-

turbance att = 5 to examine the acceleration induced by these waves forRo = 0.03. It can be

seen from Fig. 9 that these waves generate acceleration which intensifies the basic flow, and that

their contribution accounts for approximately half of the total acceleration when compared to the

results in Fig. 8. It seems that the deformation of MRG waves by the zonal flow plays an important

role in the intensification mechanism of the equatorial jet.
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3d. Acceleration mechanisms of an equatorial jet

Here, we will discuss the acceleration mechanisms of an equatorial jet emerging in shallow-water

turbulence in terms of the weak nonlinear framework. Following the results of the previous sub-

section, we will mainly focus on the contributions of the Rossby and MRG waves.

The first mechanism is involved with acceleration to the retrograde direction, which is the

prominent feature of theRo = 0.01 cases. As is discussed in Hayashi et al. (2000), absorption of

Rossby waves at the equator is expected to induce retrograde acceleration of an equatorial flow,

since the pseudo-angular momentum of Rossby waves is always negative (Hayashi and Young

1987; Iga and Matsuda 2005). By adopting the WKBJ approximation for a shallow-water system

on aβ plane for simplicity, we obtain the phase velocity for a Rossby wave packet as follows:

c = 〈u〉 − β̃

k2 + l2 + 1/L2
D

, β̃ = β − 〈u〉yy +
f〈h〉y

H + 〈h〉
, (12)

where the subscripty denotes differentiation in the meridional direction. While the longitudinal

wavenumberk and the phase velocityc are conserved along a ray, the meridional wavenumberl is

variable as

l2 = −(k2 + 1/L2
D) +

β̃

〈u〉 − c
, (13)

so that the dispersion relation (12) is satisfied. The meridional wavenumberl becomes larger with

increasing deformation radiusLD or when the phase velocity approaches the zonal velocity. Then,

a Rossby wave with a largel tends to dissipate and lose its pseudo-angular momentum. Although

the energy dissipation rates of Rossby waves depend on the order of the hyperviscosity operator and

value of the coefficient, the qualitative behavior of pseudo-angular momentum transfer due to the

waves is independent of them. We will examine how a meridional wavenumber of a Rossby wave
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packet propagating fromµ = µ0 to µ = µ1 (|µ0| > |µ1|) varies. If there is no basic flow on the

β plane, the meridional wavenumber satisfies the relationshipl21 = l20 + (µ2
0 − µ2

1)Fr2/Ro2, where

l0 andl1 are the meridional wavenumbers atµ = µ0 andµ = µ1, respectively. This relationship

suggests thatl1 becomes remarkably larger even for the same initial wavenumberl0, when the

Rossby number is smaller. Therefore, increase in the meridional wavenumber by variation ofLD

with respect to latitude induces retrograde acceleration through wave dissipation for small Rossby

numbers, even when there is no basic flow. On the other hand, treatment of the latter condition, that

the phase velocity is close to the zonal velocity, is slightly more complicated. We will suppose that

a Rossby wave packet is initially located outside the equatorial jet region so that its phase velocity

is not affected by the basic flow. The phase velocity of the wave packet can be approximately

expressed in the nondimensional form as:

c0 ∼ −
cos θ0

Ro

K2 +
(

Fr
Ro

)2
sin2 θ0

, (14)

whereθ0 is the latitude of the initial position of the wave packet andK2 = k2 + l2. Since the initial

phase velocityc0 is conserved along the ray, the condition that a critical latitude exists for the

Rossby wave packet propagating to the equatorial jet region can be simply described asmin(u0) <

c0 < 0. The phase velocity for the small wavenumber region is important for considering whether

the wave absorption at the critical latitude also works in the full-nonlinear experiment, because

motions having scales larger than the deformation radius can behave as a wave in the full nonlinear

framework. Therefore, we now focus on long waves whose wavenumbers satisfy the inequality

K2 < (Fr/Ro)2 sin2 θ0. The dominant part of Eq. (14) for the small wavenumbers can be written
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as:

c0 ∼ − Ro cos θ0

Fr2 sin2 θ0

. (15)

Equation (15) indicates that the phase velocity at a given latitude is slower and the criterion for a

Rossby wave to have a critical latitude is easily satisfied since the Rossby number is smaller. In

both cases, retrograde acceleration due to the absorption of a Rossby wave propagating toward the

equator works well when the Rossby number is small, and this conclusion is consistent with the

result of our experiments.

[Figure 10 about here.]

On the other hand, MRG waves seem to offer a clue to another mechanism for intensifying a

basic flow. When there is an equatorial jet in a basic flow, equatorial waves may be modified by

equatorial jet shear. If the structures of the equatorial waves are nearly geostrophic like the one

shown in Fig. 10, the modified waves can have correlation betweenu1 andv1, which involves

meridional transfer of pseudo-angular momentum. This momentum transfer is expected to inten-

sify the basic flow. Westward-propagating MRG waves become close to achieving geostrophic

balance when these zonal scales are smaller than the deformation radius at the equator.

[Figure 11 about here.]

In order to investigate the validity of this scenario, we will examine the acceleration due to a

monochromatic MRG wave using the weak nonlinear model having a basic flow. In this exper-

iment, the representative velocity of an initial wave is unity. Figure 11 shows the second-order

zonal flow induced by an MRG wave att = 1 for Ro = 0.03. In this figure, a negativem rep-

resents a westward-propagating mode. As for the westward-propagating MRG wave, acceleration

intensifying the basic flow becomes stronger at shorter zonal wavelength, as is expected. Although
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an MRG wave with a long wavelength induces second-order flow and thereby weakens the basic

flow, it is not steady and its amplitude is negligible. An eastward-propagating wave does not con-

tribute to acceleration at all. Furthermore, similar experiments for Kelvin and Rossby waves with

the lowest meridional wavenumber were performed, and the results are shown in Fig. 12. The

second-order acceleration induced by the Rossby wave has a double-peak structure, and its value

at the equator is zero. Acceleration due to a Rossby wave having higher meridional wavenumbers

would have more peaks. The Kelvin wave does not contribute to zonal flow acceleration. Only

MRG waves having a negativem induce acceleration with a single peak at the equator.

[Figure 12 about here.]

This simple examination indicates that the scenario mentioned above is valid. The reason why

this mechanism does not work sufficiently forRo = 0.01 may lie in the smaller deformation

radius. While a longitudinal scale of an MRG wave smaller than the equatorial deformation radius

is necessary in order to satisfy the geostrophic balance, as shown in Fig. 10, the power spectrum in

the turbulent field decreases with the zonal wavenumber. Hence, acceleration due to an equatorial

wave tilting is weaker at smaller deformation radii.

4. Concluding remarks

In order to confirm the robustness of the equatorial retrograde jet emergence in shallow-water

turbulence reported by Cho and Polvani (1996), ensemble experiments with various initial states

were performed, and the dependencies of the direction and magnitude of the equatorial jet on the

initial state were investigated using the statistical distributions of zonal flows at the equator. For a

givenFr = 0.3, the histogram for magnitude of the equatorial flow shifts in the retrograde direction
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with time. While a prograde jet at the equator does not appear for the small Rossby number cases,

both a steady prograde equatorial jet and a retrograde jet can exist for large Rossby numbers. In

this sense, the conclusion reached by Cho and Polvani (1996) that a prograde equatorial jet is not

possible is not precise.

Furthermore, we examined the second-order acceleration induced by wave-wave interactions

with the weak nonlinear model. The results obtained from the weak nonlinear experiments were

qualitatively consistent with those of the full nonlinear ones, and it has been shown that analysis

based on the weak nonlinear framework is useful for exploring the acceleration mechanisms of the

equatorial jet emerging in shallow-water turbulence. Based on the results of the weak nonlinear

experiments, the mechanisms for second-order acceleration by waves could be categorized into

two types. The first mechanism is related to the increase of the local meridional wavenumber of

Rossby waves propagating to the equator. Dissipation of a Rossby wave, whose pseudo-angular

momentum is negative, always induces zonal flow acceleration in the retrograde direction, and this

mechanism seems to have more pronounced effects at smaller Rossby numbers. In the second

mechanism, the westward-propagating MRG waves tilted by meridional shear of the zonal-mean

flow transfer the pseudo-angular momentum. A basic equatorial flow is intensified by the mecha-

nism, and it works efficiently for the larger Rossby deformation radius at the equator. However, an

equatorial jet must be formed in the initial stages in order for the second acceleration mechanism

to take effect.

The equatorial jet formation in the parameter range examined in our study can be summarized

as follows. A retrograde jet can be generated by transfer of pseudo-angular momentum due to a

Rossby wave packet propagating to the equatorial region, regardless of whether or not there is a jet

formation process resulting from PV mixing due to turbulent motion. On the other hand, increase
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of PV gradient at the equator due to PV mixing in the initial stage is necessary for the development

of a prograde jet, regardless of which mechanism plays the major role in the formation process, the

PV homogenization or wave-wave interactions. In particular, prograde acceleration does not occur

spontaneously in the weak nonlinear framework. While the histogram att = 5 shown in Fig. 1

suggests that the formation of the equatorial flow in the initial stage is strongly dependent on the

initial distribution of vortices, an in-depth analysis on jet formation due to initial mixing of vortices

is beyond the scope of the present study, although it is important for understanding the conditions

necessary for prograde jet formation. Further studies are necessary to make a more comprehensive

study on the factors determining the direction of the equatorial jet in shallow-water turbulence.
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Figure 1: Histogram of the zonal-mean zonal flow at the equator. The left, middle and right panels
indicateRo = 0.01, 0.02, and0.03 (Fr = 0.3) cases, respectively. The upper and lower panels
show the snapshots att = 5 and15.
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Figure 2: Histograms of an equatorial zonal flow with 50 ensemble members for which a prograde
flow at t = 15 is confirmed forRo = 0.03. Left and right panels show snapshots att = 15 and50.
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Figure 3: Snapshots att = 15 of the zonal-mean field for the cases where a remarkable jet appears:
(a) a retrograde case forRo = 0.03, (b) a prograde case forRo = 0.03, and (c) a retrograde
case forRo = 0.01. The dashed line indicates the zonally-uniform Rossby mode with the lowest
meridional wavenumber.
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Figure 4: Time evolution of the asymmetric index (solid line) and the zonal-mean zonal flow at the
equator (dashed line) for the case shown in Fig. 3(b).
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Figure 5: Snapshots att = 15 of potential vorticity field in the cases for (a) a retrograde jet and
(b) a prograde jet forRo = 0.03, Fr = 0.3 in the Mollweide projection. The ensemble members in
(a) and (b) are the same as those in Fig. 3. The solid and dashed lines in the right side indicate the
zonal-mean of total PV and PV in the state of rest as a function of sine latitude. The vertical and
horizontal axes are the sine latitude and the zonal-mean of total PV, respectively.
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Figure 6: Schematic illustrations for the meridional distribution of the zonal flow and PV. The
dashed line represents the PV distribution in the state of rest.
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Figure 7: Acceleration ofu cos θ or u2 cos θ betweent = 5 and15 without a jet as a basic field. (a)
All ensemble members inRo = 0.01, (b) 50 prograde ensemble members inRo = 0.03, and (c) 50
retrograde ensemble members inRo = 0.03 are used. Left panels show the zonal flow acceleration
obtained in the full nonlinear model described in Section 2. The middle and right panels present
the second-order acceleration induced by the Rossby modes only and the other parts. Error bars
show half of standard deviation.
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Figure 8: Second-order acceleration of zonal flow with a prograde jet (left panels) and a retro-
grade jet (right panels). (a) All ensembles members inRo = 0.01 and (b) 50 prograde ensembles
members inRo = 0.03 are used.
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Figure 9: Same as Figure 8(b), except that, here, the contribution of westward-propagating Rossby-
gravity modes is extracted.
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Figure 10: Schematic illustration of the jet amplification mechanism by MRG waves. See text for
details.
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Figure 11: The acceleration ofu2 cos θ due to a monochromatic MRG wave. Prograde and retro-
grade jets are supposed as basic fields in the top and bottom panels, respectively.
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Figure 12: As in Figure 11, but for Kelvin and Rossby waves with the lowest meridional wavenum-
ber.
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