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In our previous paper, asymmetry was found in jet profiles between eastward and westward jets

which appear spontaneously in two-dimensionalβ-plane decaying turbulence. That is, westward

jets are narrower and more intense than eastward jets. In this paper, we examine dependence of

the asymmetry on the order of hyper-viscosity. It is shown that the dependence is not as strong as

expected in our previous paper. A revised theoretical scenario to explain the weak dependence is

also given.
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1. Introduction

Spontaneous zonal jet formation is a well-known significant feature in two-dimensionalβ-plane

turbulence (Rhines 1975; Vallis and Maltrud 1993). The formation itself is considered due to the

upward cascade of energy which favors a zonal structure because of theβ term. Vallis and Maltrud

(1993) found asymmetry between eastward and westward jet profiles which emerged from tur-

bulent states in the forced-dissipative numerical experiments. That is, eastward jets are narrower

and more intense than westward jets. This asymmetry, which is also observed in two-dimensional

forced-dissipative turbulence on a rotating sphere (Nozawa and Yoden 1997; Huang and Robinson

1998), is thought to be related to turbulent mixing of potential vorticity. Whether such asym-

metry exists or not in decaying experiments, however, had not been explored until our previous

paper, Hasegawa et al. (2006) (hereafter, HIY2006). In HIY2006, we conducted a large number

of numerical experiments and found that there is asymmetry in profiles of zonal jets appearing

spontaneously fromβ-plane decaying turbulence. That is, westward jets are narrower and more

intense than eastward jets. This asymmetry, which is the reverse of that of the forced-dissipative

cases, is also found by Lee and Smith (2006) in an early stage of the forced-dissipative case. In

HIY2006, we also gave a theory to explain the asymmetry. Following the theory, it is expected that

the significance of the asymmetry may strongly depend on the order of hyper-viscosity in the dis-

sipation term. The dependence, however, was not explored in HIY2006. Therefore, in this paper,

we examine the dependence of the significance.

The structure of this paper is as follows. The governing equation and experimental setup are

given in Section 2. Results of numerical experiments are given and the dependence of the asymme-

try of jet profiles on the order of hyper-viscosity is examined in Section 3. In Section 4, HIY2006’s

theory is revisited and a revised theory is given to explain a discrepancy between an expectation
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from HIY2006’s theory and the results of the present paper. Discussion and conclusions are given

in Section 5.

2. Governing equation and experimental setup

The system under consideration is a non-divergent two-dimensional flow with hyper-viscosity on

aβ-plane. The flow is governed by the vorticity equation

∂ζ

∂t
+

∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
+ β

∂ψ

∂x
= (−1)p+1νp(∇2)pζ. (1)

Here,ζ ≡ ∇2ψ is the vorticity,ψ is the stream-function,x is the longitude,y is the latitude,t

is the time,∇2 is the Laplacian operator,νp is the hyper-viscosity coefficient, andp is the order

of the hyper-viscosity. Note that the governing equation has been nondimensionalized and we are

dealing with nondimensional variables and parameters. We use three values ofp, p = 1, 2, and

3 to examine the dependence of the asymmetry of jet profiles on the order of the hyper-viscosity.

Note thatp = 1 corresponds to Newtonian viscosity. The hyper-viscosity coefficient is set as small

as possible unless enstrophy accumulates near the truncation wavenumber unphysically with the

following experimental setup. Depending onp, we set the hyper-viscosity coefficient as follows:

ν1 = 1 × 10−4, ν2 = 1 × 10−7, andν3 = 1 × 10−11.

We assume a periodic boundary condition in bothx andy directions

ζ(x, y + 2π, t) = ζ(x, y, t) = ζ(x + 2π, y, t). (2)

To integrate Eq.(1) numerically, we adopted the Fourier spectral method with the truncation
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wavenumber ofKT = 170 for the spatial discretization. The nonlinear term is computed using the

transform method with alias free grids,512× 512. The time integration scheme is the classical 4th

order Runge-Kutta scheme.

The initial condition is a random vorticity field the energy spectrumE(K) of which is given as

follows

E(K) ∝


 2√

K/K0 +
√

K0/K




γ

, (3)

where,K =
√

k2 + l2 is the total wavenumber,k is the wavenumber in thex-direction, and

l is that in they-direction. We setK0 = 32 and γ = 1000, which means the initial energy

spectrum has a sharp peak at the wavenumberK = 32. The phase of each Fourier component is

set randomly. We conduct 11-member ensemble experiments changing the random initial phase.

The total energy of the initial state is set to1/2. This means that the root mean square velocity (u0)

for the initial state is1. We fix the parameterβ as256. This means that the Rhines wavenumber

Kβ =
√

β/(2u0) = 8
√

2 ≈ 11.3. We checked that there is no qualitative difference in the

following discussion with other sets ofKT , K0, andβ as long as the inequalityKβ ¿ K0 ¿ KT

holds.

[Figure 1 about here.]

3. Results

Figure 1 shows the time evolution of the zonal mean zonal windū(y, t) for a member of ensemble

experiments withp = 2 (that is, the hyper-viscosity is of second power of Laplacian, which is also

used in HIY2006). Here,u = −∂ψ/∂y, and(̄ ) = 1
2π

∫ 2π
0 ( )dx. As time goes on, zonal jet struc-

tures develop and the wavenumber of the zonal profile is close toKβ (in this particular example,
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it is about12). In an early stage of the time evolution (t ≤ 2.0), there is no significant difference

between eastward and westward jets. After that, however, westward jets become more intense than

eastward jets as found by HIY2006. Here, we define the intensity of a jet as the absolute value

of the peak wind velocity. To confirm this asymmetry, we examine the time evolution ofū(y, t)

of each ensemble member. We introduce a suffixj (j = 1, 2, . . . , 11) to identify an ensemble

member. Using this, we define the maximum speed of eastward and westward jets as

U e
max(t) = max

j∈Λ
( max
0≤y≤2π

uj(y, t)), (4)

Uw
max(t) = max

j∈Λ
( max
0≤y≤2π

(−uj(y, t))), (5)

respectively. Here,Λ = {1, 2, . . . , 11}. Figure 2 shows the time evolutions ofU e
max andUw

max for

experiments with the hyper-viscosity ofp = 2. Although there is no significant difference between

U e
max andUw

max at an early stage of evolution (t ≤ 1), Uw
max grows more rapidly thanU e

max to have

a larger value after that.

[Figure 2 about here.]

Until now, we have confirmed the asymmetry found by HIY2006 with ensemble experiments

for p = 2 hyper-viscosity. Following HIY2006’s theory, which is reviewed in the next section,

it is expected that the significance of the asymmetry may strongly depend on the order of hyper-

viscosityp. Now, we examine the dependence of the significance. Figure 3 shows the time evo-

lutions ofU e
max andUw

max for p = 1 (Newtonian viscosity) andp = 3 (hyper-viscosity of the third

power of Laplacian). There are some differences among Fig.2, Fig.3a, and Fig.3b in the timing

whenUw
max − U e

max starts growing and the value ofUw
max − U e

max at later stages of the time evo-

lutions. However, the dependence of the significance of the asymmetry onp is not as strong as
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expected by HIY2006. In the next section, we review HIY2006’s theory and propose a revised

theory to explain the weak dependence.

[Figure 3 about here.]

4. Theory

In HIY2006, we proposed the following theoretical scenario to explain the asymmetry formation.

1. At the early stage of time evolution, weak zonal jets are formed by the upward energy cascade

which favors zonal components inβ-plane turbulence.

2. Considering Rossby wave propagation theory,l2 (l is the latitudinal wavenumber) of Rossby

waves becomes so large in westward jet regions that Rossby waves are dissipated more

easily than in eastward jet regions due to the hyper-viscosity.

3. When Rossby waves are dissipated, they leave their westward pseudo-momentum to zonal jets.

Therefore, westward jets are intensified sharply.

To check the validity of the scenario, HIY2006 used a linearized equation of Eq.(1)

∂ζ ′

∂t
+ U0(y)

∂ζ ′

∂x
+

(
β − ∂2U0

∂y2

)
∂ψ′

∂x
= (−1)p+1νp(∇2)pζ ′. (6)

Here,U0(y) is a prescribed basic zonal flow, andζ ′ = ∇2ψ′. The acceleration is evaluated as

∆U(y, t) = −
∫ t

0

∂

∂y
(u′v′)dt, (7)
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whereu′ = −∂ψ′/∂y, v′ = ∂ψ′/∂x. To validate the scenario simply, we consider an idealized

situation. The prescribed basic zonal flow profile is set as

U0(y) = −A sin(my). (8)

The initial disturbance is set to be a monochromatic wave

ζ ′(x, y, t = 0) = B sin(kx + ly), (9)

where we setk = l = m = Kβ, A = 0.3, andB = 2Kβ. The choice is based on representative

values of the wavenumbers for both zonal components and wavy disturbances, and the speed of

zonal jets in the nonlinear time evolution att = 1 when zonal jets start growing but the asymmetry

has not yet developed. The value ofB is set so that the energy of the monochromatic wave is1/2,

which is the initial total energy of the nonlinear time evolution shown in the previous section. To

integrate Eqs.(6) and (7) economically, we introduce a scale translation,

x∗ = Kβx, y∗ = Kβy, ∇2
∗ = K−2

β ∇2, ψ′
∗ = K2

βψ′, U0∗ = KβU0, ∆U∗ = Kβ∆U,

β∗ = K−1
β β, νp∗ = K2p

β νp.

Using this translation, Eqs.(6) and (9) are translated as follows

∂ζ ′

∂t
+ U0∗

∂ζ ′

∂x∗
+

(
β∗ −

∂2U0∗

∂y2
∗

)
∂ψ′

∗
∂x∗

= (−1)p+1νp∗(∇
2
∗)

pζ ′, (10)

ζ ′(x∗, y∗, t = 0) = B sin(x∗ + y∗). (11)
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Integrating Eq.(10) from the initial condition Eq.(11) is easier than the original problem because

we can reduce the truncation wavenumber for Fourier expansion. Time evolution of∆U(y, t) is

computed as follows. Conceptually, spectrally discretized version of Eq.(10) can be written as

dx

dt
= Mx. (12)

Here,x represents the vector of spectral coefficients ofψ′, andM is a square matrix corresponding

to the linear operators in Eq.(10). Equation(12) can be integrated analytically with the aid of

numerical matrix diagonalization. The solution can be written as

x(t) =
∑

n

cne
σntvn. (13)

Here,σn andvn are an eigenvalue and a corresponding eigenvector ofM, respectively. The coeffi-

cientcn is determined by the initial condition. In Eq.(7),∂u′v′/∂y is a quadratic quantity ofψ′, so

that the time integration can be done analytically using the solution, Eq.(13), for anyt even for the

limit t → ∞. Figure 4 showsU(y, t) = U0(y) + ∆U(y, t) profile att = 10 and ast → ∞ for the

hyper-viscosity ofp = 2. As is expected in the scenario, the westward acceleration is sharper and

more intense in the westward jet region than the eastward acceleration in the eastward jet region

in Fig.4b (ast → ∞). However, the growth of the acceleration is very slow. Att = 10 (Fig.4a),

there can be seen the asymmetry, but the acceleration is not so significant as seen in Fig.2. Figure

5 showsU(y, t) = U0(y) + ∆U(y, t) profile ast → ∞ for p = 1 (Newtonian viscosity) andp = 3

hyper-viscosity. The asymmetry in final (t → ∞) acceleration is much more significant forp = 3

hyper-viscosity than forp = 2, and it is much less significant forp = 1 Newtonian viscosity.

8



The final acceleration profile depends mainly on the order of the hyper-viscosity when the

hyper-viscosity coefficient is small enough. Figure 6 showsU(y, t) profile ast → ∞ for p = 1

(Newtonian viscosity),p = 2, andp = 3 hyper-viscosity with halved value of hyper-viscosity

coefficients, that is,ν1 = 0.5 × 10−4, ν2 = 0.5 × 10−7, andν3 = 0.5 × 10−11. Comparing Fig.6a

with Fig.5a, Fig.6b with Fig.4b, and Fig.6c with Fig.5b, it is hard to see the dependence of the final

acceleration profile on the value of the hyper-viscosity coefficient. From further computations, it

seems that the final acceleration profile converges to a profile which depends only on the order of

the hyper-viscosity asνp → 0 although we have no theoretical proof. Knowing this behavior of

the final acceleration profile, we focus on the dependence of the acceleration profile on the order

of the hyper-viscosity in this paper.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

As seen above, there are two defects in HIY2006’s theory. That is, the growth of the acceler-

ation is too slow and the dependence of the acceleration asymmetry onp is too strong comparing

with the results of nonlinear time evolution seen in the previous section. Therefore, we now try to

revise the scenario to fill the gap. In the scenario and the computation, we neglected two important

effects. One is the effect that the acceleration changes the basic profile, which will affect Rossby

wave propagation. The other is the effect of hyper-viscosity on the basic profile, which will smooth

it. To include these effects, we change Eq.(6) into

∂ζ ′

∂t
+ U(y, t)

∂ζ ′

∂x
+

(
β − ∂2U

∂y2

)
∂ψ′

∂x
= (−1)p+1νp(∇2)pζ ′, (14)
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and letU change as

∂U(y, t)

∂t
= − ∂

∂y
(u′v′) + (−1)p+1νp(∇2)pU. (15)

We integrate Eqs.(14) and (15) simultaneously from the initial conditionU(y, t = 0) = U0(y) with

the scale translation described above. These coupled equations form a nonlinear system, so that

the time integration is done numerically using the classical 4th order Runge-Kutta scheme. Figure

7 showsU(y, t) profiles att = 10 computed forp = 1, 2, and3. In Fig.7, each figure shows sharp

acceleration in the westward jet region and the intensity of the acceleration is large enough even

at t = 10, but the difference of the acceleration among the figures is not so large as that between

Fig.4 and Fig.5.

To check which of the two effect, the change in the basic profile and the hyper-viscosity on the

zonal mean flow, is important, we conduct an additional set of computations removing the hyper-

viscosity term in the time evolution equation of the zonal mean flow (Eq.(15)). Figure 8 shows

resultingU(y, t) profiles att = 10 computed forp = 1, 2, and3. The difference of the acceleration

among the figures in Fig.8 is as inconspicuous as that in Fig.7. Therefore, it is concluded that

the effect of the hyper-viscosity on the zonal mean flow is much less important for reducing the

dependence of the acceleration on the order of the hyper-viscosity.

Although the results above indicate that the wave-mean-flow interaction can explain the asym-

metry in the acceleration profile and the insignificant dependence on the order of the hyper-

viscosity, they are based on the quasi-linear system consists of Eqs.(14) and (15), which neglects

the wave-wave interactions. To examine whether the wave-wave interactions can affect the acceler-

ation profile largely or not, we conduct a further set of computations. The full nonlinear governing

equation, Eq.(1), is integrated from the same initial condition as used in the quasi-linear system
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above. That is, the initialζ field can be written as

ζ(x, y, t = 0) = −dU0

dy
+ ζ ′(x, y, t = 0) = Am sin(my) + B sin(kx + ly) (16)

using Eqs.(8) and (9). Figure 9 shows resulting zonal mean flow profileū(y, t) at t = 10 computed

for p = 1, 2, and3. Comparing Fig.9 with Fig.7, the acceleration profiles are very similar for each

p. This result indicates that the wave-wave interactions are much less important for the asymmetric

acceleration than the wave-mean-flow interactions. The reason the wave-wave interactions have

secondary importance is thought that the wave-mean-flow interactions affect the characteristics

of the wave propagation dominantly through the change in the mean flow profile while waves of

higher wavenumbers generated by the wave-wave interactions are transient and have little effect

on the propagation of the primary wave.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

5. Discussion and Conclusions

One main conclusion of this paper is that the asymmetry found by HIY2006, which is that west-

ward jets are more intense than eastward jets inβ-plane decaying turbulence, can be seen even if

we adopt Newtonian viscosity not hyper-viscosity. That is, the asymmetry is not an illusion arising

from hyper-viscosity. This weak dependence of the asymmetry on the order of hyper-viscosityp is

somewhat in discord with HIY2006’s theory. This discordance is resolved with a revision for the
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theory as seen in the previous section. The effect which is thought to prevent the dependence from

becoming too strong is the acceleration by Rossby waves changes the basic profile, which causes

a positive feedback to magnify the asymmetry. The reason the effect lead to the weak dependence

on the order of the hyper-viscosity is explained as follows. Once westward acceleration occurs in

westward jet region, the speed of westward jet is amplified so that it becomes closer to the phase

speed of Rossby waves. Thenl2 of Rossby waves becomes so large there (if a critical level appear,

l2 goes to infinity) that the waves are dissipated very quickly independently of the order of the

hyper-viscosity. Therefore, even in Newtonian viscosity case, the asymmetry can grow quickly.

We should now add a new item to the scenario reviewed in the previous section as,

4. The acceleration causes a positive feedback to help the asymmetry to grow. By this effect, the

significance of the asymmetry does not strongly depend on the order of hyper-viscosity.

Now, a question comes into mind naturally. Why does the mechanism fail to work in forced

cases? We speculate that there are two reasons. One is that continuous energy input in small

scales in forced cases keeps nonlinear terms dominant. This effect prevents the mechanism from

working well because it is based on linear wave dynamics. Stronger zonal jets in forced cases

makeβ̂ = β − ūyy small in westward jet regions, which may promote the dominance of nonlinear

terms further. The other is the Rayleigh friction type drag term introduced in forced cases to obtain

energy equilibration. If such a damping term causes large scale wave dissipation dominantly, it

will also prevent the mechanism from working well because scale dependence of dissipation is

necessary for the mechanism to work. The importance of the drag term to obtain stronger eastward

jets than westward jets is shown by Lee and Smith (2006). Further investigation, however, is

required to confirm whether the speculation above is correct or not.
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Figure 1: Time evolution of the zonal mean zonal wind profileū(y, t) for a member of ensemble
experiments withp = 2 hyper-viscosity. Timet is indicated on the top of each figure.
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Figure 2: Time evolutions ofUw
max (solid line) andU e

max (dotted line) withp = 2 hyper-viscosity.
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Figure 3: Same as Fig.2 but forp = 1 Newtonian viscosity (a) andp = 3 hyper-viscosity (b).
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Figure 4: Acceleration by an initially monochromatic Rossby wave in the linearized model Eqs.(6)
and (7) forp = 2 hyper-viscosity. The dotted line shows the prescribed zonal flow profileU0, and
the solid line showsU0 + ∆U profile. (a) is att = 10, and (b) is ast → ∞.
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Figure 5: Same as Fig.4b but forp = 1 Newtonian viscosity (a), and forp = 3 hyper-viscosity (b).
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Figure 6: Same as Fig.4b and Fig.5 except that the value of hyper-viscosity coefficient is halved.
(a) is forp = 1 Newtonian viscosity, (b) is forp = 2 hyper-viscosity, and (c) is forp = 3 hyper-
viscosity.
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Figure 7: Acceleration by an initially monochromatic Rossby wave in the linearized model
Eqs.(14) and (15) att = 10. The dotted line shows the prescribed zonal flow profileU0, and the
solid line showsU profile. (a) is forp = 1 Newtonian viscosity, (b) is forp = 2 hyper-viscosity,
and (c) is forp = 3 hyper-viscosity.
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Figure 8: Same as Fig.7 except that the acceleration is calculated without the hyper-viscosity term
in Eq.(15).
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Figure 9: Same as Fig.7 except that the acceleration is calculated with the full nonlinear equation,
Eq.(1).
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