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Abstract

Weakly nonlinear aspects of a barotropically unstable polar vortex in a forced-dissipative

system with a zonally asymmetric surface topography are investigated in order to obtain

deeper understanding of rather periodic variations of the winter circumpolar vortex in the

Southern Hemisphere stratosphere, which are characterized by the wave-wave interaction

between the stationary planetary wave of zonal wavenumber 1 (denoted as Wave 1) and

the eastward traveling Wave 2 as studied by Hio and Yoden in 2004. We use a spheri-

cal barotropic model with a forcing of zonally symmetric jet, dissipation, and sinusoidal

surface topography. We perform a parameter sweep experiment by changing the ampli-

tude of the surface topography which forces the stationary Wave 1 and the width of the

prescribed zonally symmetric jet which controls the barotropic instability to generate the

traveling Wave 2. Several types of solutions from a time-independent solution to non-

periodic irregular solution are obtained for the combination of these external parameters,

but the predominant one obtained in a wide parameter space is periodic solution.

Details of the wave-wave interactions are described for the transition from a quasi-

periodic vacillation to a periodic solution as the increase of the amplitude of topography.

Phase relationships are locked at the transition, and variations of zonal mean zonal flow

and topographically forced Wave 1 synchronize with periodic progression of Wave 2 in

the periodic solution. A diagnosis with a low-order “empirical mode expansion” of the

vorticity equation gives a limited number of dominant nonlinear triad interactions among

the zonal mean, Wave 1, and Wave 2 components around the transition point.
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1 Introduction

This paper considers nonlinear dynamics of an idealized winter polar vortex in the South-

ern Hemisphere (SH) stratosphere with a barotropic model on a spherical domain. The

SH polar vortex is stronger and less disturbed compared to that of the Northern Hemi-

sphere. In other words, the zonal mean zonal flow is stronger and planetary waves are

weaker in the SH due to weaker forcing of the planetary waves in the troposphere. As a

result, major stratospheric sudden warming event had not been observed in the SH before

2002 (e.g., Baldwin et al. 2003). On the other hand, rather periodic variations of the

polar vortex, which are characterized by eastward rotation of the elongated polar vortex

and change in the shape with a period of about a week or so, are often observed in the SH

as analyzed in our previous paper (Hio and Yoden 2004, hereafter referred to as HY04).

These features in the SH stratosphere are indicative of weakly nonlinear nature of the

polar vortex in the SH.

The wave-wave interaction between the stationary “planetary wave of zonal wavenum-

ber 1” (hereafter denoted as “Wave 1”) and eastward propagating Wave 2 was investigated

in HY04 with the NCEP/NCAR reanalysis dataset over 20 years. The stationary Wave 1

is generated in the troposphere mainly by zonally asymmetric lower boundary conditions

and has significant interannual variations (Hio and Hirota 2002). On the other hand,

barotropic/baroclinic instabilities of the polar night jet play an important role for the

generation of the eastward propagating Wave 2 in late winter (e.g., Manney et al. 1991).

The correspondence of negative or nearly zero meridional gradient of the zonal mean

potential vorticity to large-amplitude events of eastward propagating Wave 2 shown by

HY04 (their Fig. 15 b) suggests in situ instability of the zonal mean zonal flow as the
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generation process. A typical case analyzed in HY04 shows that the transient Wave 1

generated by the wave-wave interaction has comparable amplitude to those of the sta-

tionary Wave 1 and the traveling Wave 2, and has a node around 60◦ S where these

primary waves have large amplitudes. The transient Wave 1 travels eastward with the

same angular frequency as that of the traveling Wave 2. The zonal mean polar night jet

also oscillates with the same frequency such that it has its minimum when the stationary

Wave 1 and the transient Wave 1 are in phase at the polar side of the node.

HY04 also discussed similar wave-wave interactions in another case in August and

September 2002, before the unprecedented major stratospheric sudden warming event in

the SH. Generally such wave-wave interactions in these months are not as clear as those

in late winter due to slower phase speed of traveling Wave 2. However, the situation was

exceptional in the mid winter in 2002 because the seasonal march was much earlier than

the other years (Hio and Yoden 2005).

In HY04, similar periodic variations of the polar vortex were also obtained in a nu-

merical experiment with a spherical barotropic model in which the stationary Wave 1

was forced by surface topography while the eastward propagating Wave 2 was generated

by the barotropic instability of a forced zonally symmetric polar night jet. The model is

identical to that developed by Ishioka and Yoden (1995, hereafter IY95), if the surface

topography is removed. IY95 investigated the flow regimes for two barotropically un-

stable jet profiles introduced by Hartmann (1983), by changing three parameters which

control the intensity, width, and latitudinal position of the polar night jet. They obtained

quasi-periodic vacillation solutions and non-periodic irregular solutions as well as periodic

steady-wave solutions in some parameter ranges.

Such single layer models have been used by some others to study fundamental dynamics
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of the winter stratosphere polar vortex; such as planetary wave breaking (e.g., Juckes and

McIntyre 1987, Yoden and Ishika 1993, Thuburn and Lagneau 1999), equilibrium states

of initially barotropically unstable polar vortices (Prieto and Schubert 2001), and chaotic

mixing process and transport barrier (Mizuta and Yoden 2001). Recently, Rong and

Waugh (2004) investigated internal variations of the polar vortex in a shallow water model

with planetary-scale wave forcing by surface topography and relaxation to a prescribed

zonally symmetric equilibrium state. Only weak disturbances on the edge of the polar

vortex were obtained for small topographic height, whereas full cycles of the breakdown

and recovery of the polar vortex were obtained for large topographic height.

Following the two papers of IY95 and HY04, this work aims to investigate the flow

regimes in the same model as HY04 for a wide range of the external parameters that

give the amplitude of surface topography and the width of the polar night jet. The

former controls the magnitude of forced stationary wave, while the latter influences on

the magnitude of barotropic instability. We perform over 150 runs of the numerical time-

integrations for the parameter sweep to show the predominance of the periodic solutions

due to wave-wave interactions. The dynamical situation of the polar vortex is close to

that of Rong and Waugh (2004) for small topographic height without breakdown of the

polar vortex. In such a situation, the eastward propagating Wave 2 generated by the

barotropic instability as well as the topographically forced Wave 1 plays a crucial role

through the wave-wave interactions.

Steady-wave solution in the case without topography is a simple periodic solution in

which Wave 2 propagates eastward with a constant phase speed, while periodic solution

in the case with topography is complicated by the wave-wave interactions, because all

the components must synchronize with the same frequency. In order to understand the
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complicated periodic solution and vacillation further, we investigate transitions between

these solutions thoroughly, because time variations are generally simpler around transition

points due to small amplitude of perturbations. A low-order “empirical mode expansion”

of the two-dimensional vorticity equation is introduced to diagnose the wave-wave inter-

actions in the parameter range around the transitions of flow regime.

The model and experimental procedure are described in Section 2. Dependence of flow

regime on the external parameters is shown in Section 3. Some examples of the transition

of flow regime, e.g., from a periodic solution to a quasi-periodic vacillation, are examined

in Section 4. Discussion is in Section 5 and concluding remarks are in Section 6.

2 Model and experimental procedure

We use the same dynamical model as in HY04 which describes two-dimensional flow on

the Earth with the forcing of zonal mean zonal flow, dissipation and surface topography.

The flow is governed by a potential vorticity (hereafter PV) equation in the form

Dq

Dt
= −α (

ζ − ζf

)
+ ν

(
∇2 +

2

a2

) (
ζ − ζf

)
, (1)

where q = ζ + f + (fh/H) is the PV, ζ = ∇2ψ is the relative vorticity, ψ(λ, φ, t) the

streamfunction, λ the longitude, φ the latitude, t the time, a the radius of the Earth,

f = 2Ω sinφ the Coriolis parameter, Ω the angular speed of the Earth’s rotation, h the

height of the surface topography, and H the mean depth of the fluid layer. The right

hand side of Eq. (1) gives non-conservative terms, and ζf is the prescribed vorticity for

the forcing of zonal mean zonal flow. The relaxation time α−1 of the Newtonian-type

forcing is set to 10 days and artificial viscosity coefficient ν is fixed at a small constant

(= 6.43×104 m2 s−1) to give the dissipation. The material derivative operator D/Dt and
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the horizontal Laplacian operator ∇2 are given by

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+

u

a cosφ

∂

∂λ
+
v

a

∂

∂φ
, (2)

∇2 =

[
1

a2 cos2 φ

∂2

∂λ2
+

1

a2 cos φ

∂

∂φ

(
cosφ

∂

∂φ

)]
, (3)

respectively, where the horizontal velocity u is

u = (u, v) =

(
−1

a

∂ψ

∂φ
,

1

a cosφ

∂ψ

∂λ

)
. (4)

The prescribed vorticity for the forcing, ζf = −(1/a)(∂uf/∂φ), is set to satisfy the

necessary condition of barotropic instability (Hartmann 1983):

uf =
U

2

(
1 + tanh

φ− φ0

B

)
cosφ, (5)

where U is a measure of the intensity of the prescribed zonally symmetric jet, B its width,

and φ0 its latitudinal position. All the conditions are the same as in IY95 for the case

of h = 0, and the regime diagram for this case in the three dimensional parameter space

(U , B, φ0) is given in IY95 (their Fig. 1). In this work we sweep the parameter B for

3◦ ≤ B ≤ 18◦ with fixed values of U = 240 ms−1 and φ0 = 55◦. Eastward propagating

Wave 2 is generated when B is so small, or the prescribed jet is so narrow, as to satisfy the

condition of barotropic instability. Thus, sweeping the parameter B means the change of

the features of the eastward propagating Wave 2.

To force stationary Wave 1, sinusoidal surface topography of zonal wavenumber 1 is

assumed in the model SH as

h(λ, φ) =
1

2
h0(sin 2φ)2 cosλ, (6)

and no topography in the NH. We sweep the parameter r = h0/H for 0 ≤ r ≤ 0.1 to

investigate dynamical features depending on the forced stationary Wave 1.
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We use a spectral model with a triangular truncation of T85 in spherical harmonics

and the fourth-order Runge-Kutta method for time integrations, as in IY95, Mizuta and

Yoden (2001), and HY04.

3 Flow regimes

3.1 Dependence on B and r

Table 1 is a regime diagram which shows the dependence of flow regime on the width of Table 1

the prescribed zonally symmetric jet for 3◦ ≤ B ≤ 18◦ and the ratio of the topographic

height to the mean fluid depth for 0 ≤ r ≤ 0.1.

In the case of r = 0 without topography on the first row in Table 1, we obtain a

time-independent solution with no wave (as denoted by N) for wide jets of B ≥ 12◦. The

prescribed jet becomes barotropically unstable for B < 12◦, and we obtain a steady-wave

solution (S) for 6◦ ≤ B ≤ 11◦. In the steady-wave solution, Wave 2 travels eastward with

a constant phase speed without changing its horizontal structure, and the streamfunction

for this component is expressed as

(Steady-wave) : ψ2(λ, φ, t) = C2(φ)ei(2λ−ωP t), (7)

where a subscript number indicates the zonal wavenumber s. This is a periodic solution

with an angular frequency ωP .

In IY95, steady-wave solutions were obtained for B = 8◦ and 6◦, while vacillation

solution was obtained for B = 4◦ in which the elongated polar vortex with Wave 2

component rotates eastward by changing its shape periodically. See Fig. 4 in IY95 for

the time variation of the PV field for r = 0. Vacillation solution (V0) is quasi-periodic
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with two incommensurable frequencies of the rotation, ωP , and shape change, ωA:

(Vacillation) : ψ2(λ, φ, t) = {C2(φ) + A2(φ)eiωAt}ei(2λ−ωP t). (8)

Table 1 shows the transition from steady-wave solution (S) to vacillation (V0) takes place

between B = 6◦ and 5.5◦. Figure 1 shows the wave decomposition of the PV field of Fig. 1

a vacillation solution for B = 4◦. Time averaged structure of the traveling Wave 2,

C2(φ)ei2λ, which has an angular frequency of ωP = 2π/10.8 day−1, is displayed in the

bottom right panel. The amplitude modulation of the Wave 2 field, A2(φ)eiωAtei(2λ−ωP t),

is shown for 10.8 days with a time interval of 1.8 days. The pattern at t = 0 day and that

at t = 1.8 day are about the same as those at t = 9.0 day and t = 10.8 day, respectively,

except for the longitudinal phase. Spectral analysis shows that the frequency of the

amplitude modulation is ωA = 2π/9.2 day−1 (see Fig. 6).

In the cases with topography (r �= 0), four kinds of solutions are obtained as shown

in Table 1; stationary-wave solution (Sta), periodic solution (P ), vacillation solution (V ),

and irregular solution (I). For wide jets of B ≥ 9◦, stationary-wave solution (Sta) is

obtained, which is a time-independent solution with forced stationary Wave 1:

(Stationary-wave) : ψ1(λ, φ) = S1(φ)eiλ. (9)

As B is reduced, transition from stationary-wave solution (Sta) to periodic solution

(P ) takes place for 8◦ < B < 9◦. The value of B for the first transition associated with the

barotropic instability of the zonal jet influenced by stationary Wave 1 is reduced largely

by the existence of the surface topography, although the value for the transition is not

dependent on r for 0.02 ≤ r ≤ 0.1. As described in detail by HY04 in their Section 3,

periodic variation of the polar vortex occurs as a result of the interaction between the

topographically forced Wave 1 and the traveling Wave 2 due to barotropic instability of
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the prescribed jet. The streamfunctions for Wave 1 and 2 are expressed as

(Periodic solution) : ψ1(λ, φ, t) = S1(φ)eiλ + {C1(φ) +B1(φ)eiωBt}ei(λ−ωBt), (10)

ψ2(λ, φ, t) = S2(φ)ei2λ + {C2(φ) +B2(φ)eiωBt}ei(2λ−ωB t),(11)

respectively. Note that these traveling waves have the same angular frequency as that of

the amplitude modulation of these waves, ωB. The zonal mean zonal flow also oscillates

with the same frequency due to periodic variation of the wave driving by the interference

between the stationary Wave 1 and the traveling Wave 1. Figure 2 (a) and (c) show Fig. 2

the time mean structures of traveling Wave 2, C2(φ)ei2λ, and traveling Wave 1, C1(φ)eiλ,

respectively, while (b) shows the structure of stationary Wave 1, S1(φ)eiλ. The traveling

Wave 2 and the stationary Wave 1 are mostly confined between 50◦S and 70◦S with the

maximum amplitude around 63◦S, while the traveling Wave 1 has the maximum around

67◦S and has a node around 60◦S with the secondary maximum around 55◦S.

Vacillation solution (V ) is quasi-periodic with two incommensurable frequencies as

in the case without topography (V0), but the time variations of each component are

complicated by the interactions with forced stationary Wave 1 as analyzed in the rest of

this paper. Transition from periodic solution (P ) to vacillation (V ) takes place between

B = 3.5◦ and 4◦ for r = 0.02. There is no vacillation solution between B = 4◦ and 5.5◦ in

the case r �= 0 in Table 1 at an interval of ∆r = 0.02, but it does exist for this range of B.

One can obtain vacillation solution for finite values of r < 0.02. Non-periodic irregular

solutions (I) are obtained for r = 0.08 and 0.1 with small B. The interval ∆r in Table 1

is too large for us to discuss the transition from periodic solution to irregular one. Similar

spatial structures of Wave 1 and 2 as those shown in Fig. 2 for a periodic solution are still

obtained in the irregular solutions. The similarity of the wave structures is indicative that
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the wave-wave interactions are common features for a wide range of r �= 0 and B ≤ 8◦ in

Table 1.

3.2 Regime transitions at B = 4◦

We now examine the regime transitions in more detail at B = 4◦, regimes at which are

denoted with bold characters in Table 1, by changing r with smaller intervals (∆r = 0.001

for 0 ≤ r ≤ 0.042 and ∆r = 0.002 for 0.044 ≤ r ≤ 0.09). As shown in the bottom part

of Fig. 3 (a), we have vacillation solutions (V ) for 0 ≤ r ≤ 0.015, periodic solutions

(P ) for 0.016 ≤ r ≤ 0.078, and irregular solutions (I) for 0.08 ≤ r. Figure 3 shows the Fig. 3

dependence on the parameter r of some quantities associated with (a) the zonal mean

zonal flow, (b) Wave 2, and (c) Wave 1, at φ = 62.3◦S. A dot denotes the time averaged

value of a quantity and accompanying vertical bar denotes its variation range.

The time averages of (a) the zonal mean zonal flow and (b) the amplitude of traveling

Wave 2 decrease a little as r increases in the vacillation regime. Their variation ranges also

gradually decrease with r. As shown in the enlargement in Fig. 3 (c), the time averaged

amplitude of traveling Wave 1 increases almost linearly with r, while its variation range

has a maximum around r = 0.01. The amplitude of stationary Wave 1 is zero when r = 0

and increases almost linearly with r while that of the stationary Wave 2 is quite small in

the vacillation regime, as shown by the solid lines in Fig. 3 (c) and (b), respectively.

All the variation ranges of the mean zonal flow and traveling Wave 1 and 2 become

smallest around r = 0.015 where the transition between vacillation solution and periodic

solution takes place. The variation ranges of the mean zonal flow and traveling Wave

1 increase gradually and smoothly in the periodic solution regime. They become larger

and more sensitively dependent on r after the transition to irregular solution at r � 0.08
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because of the chaotic nature of irregular solutions. On the other hand, the variation

range of traveling Wave 2 increases for 0.015 ≤ r ≤ 0.052 and then decreases to have a

local minimum at r = 0.068. It increases again and has large values after the transition

to irregular solution.

The time mean of the mean zonal flow decreases gradually as r increases, and that of

traveling Wave 2 decreases over 1/2 in the range of r shown in Fig. 3. On the other hand,

the time mean of traveling Wave 1 increases in this range. The stationary Wave 2 attains

significant amplitude in the periodic solution regime and has a maximum at r = 0.052.

3.3 Synchronization in periodic solution

Figure 4 shows some examples of the time variations of the zonal mean zonal flow and Fig. 4

Wave 1 and 2 in each regime for 8 values of r from 0 to 0.09 indicated by downward arrows

a - h in Fig. 3 (a). Top row shows the time variation of the zonal mean zonal flow at

65.1◦S, while middle and bottom rows show the polar diagrams of the complex amplitude

of Wave 2 and 1 such as Figs. 8 and 11 in HY04. The trajectory of each wave component

of the relative vorticity (ζs(φs, t)e
isλ, s = 1, 2) in a Re[ ζs ] - Im[ ζs ] plane gives the

time variation of its amplitude and phase by |ζs| and arg[ ζs ], respectively. In Fig. 4,

φs is chosen as the latitude at which the traveling wave component has the maximum

amplitude, and the value of φs is shown in each panel. To know the phase relationship

of these variations, open circle (◦) or plus sign (+) is put at each timing when the zonal

mean zonal flow has a local maximum or minimum value.

In the vacillation solution without topography, the zonal mean zonal flow varies purely

periodically and the polar diagram of Wave 2 shows torus structure as shown in Fig. 4

(a). The torus structure is unique for vacillation and it reflects the modulation of wave
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amplitude without preference or dependence on the wave phase. Note that the open

circles are on the inner side of the torus while the plus signs on the outer side. This

relationship means small (large) amplitude of Wave 2 for maximum (minimum) value of

the mean zonal flow. The polar diagram of Wave 1 has no amplitude for r = 0, while it

shows coexistence of the stationary and traveling components for r �= 0. The stationary

component is denoted by a small dot in each panel, while the traveling one is recognized

as the vector difference between a point on the trajectory and the stationary component.

Thickness of the torus for Wave 2 gets thinner with r, corresponding to the decrease of

the variation range of traveling Wave 2 as shown in Fig. 3 (b).

It is very difficult to distinguish deformation of the vacillation solution due to the

existence of surface topography in Fig. 4 (b) and (c) except for the polar diagram of

Wave 1, but the deformation becomes clear for larger r just before the transition to

periodic solution as shown in Fig. 5 for r = 0.0145 (a), 0.015 (b), and 0.01502 (c). A Fig. 5

periodic solution shown in Fig. 5 (d) is obtained for r = 0.01504 after the transition.

The transition point exists between r = 0.01502 and 0.01504. Beat of the fluctuation

of the zonal mean zonal flow is seen for vacillation solutions; the modulation becomes

small in (c) and is not found in (d). The timings when the mean zonal flow has its local

maximum (open circle) or minimum (plus sign) are not very relevant to the phases of

Wave 2 and 1 at r = 0.0145 (a), while the timings have preferred phase both in Wave

2 and 1 for r = 0.015 (b) and 0.01502 (c). The variation range of the phases denoted

by open circle or plus sign becomes small as r increases to the transition point, and the

timings is completely locked for the periodic solution (d). In other words, fluctuations of

the zonal mean zonal flow and topographically forced Wave 1 synchronize with periodic

progression of Wave 2 in the periodic solution. These features of the periodic solution
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remain in the vacillation solutions in the vicinity of the transition point as the preferred

phase relationship. Variations of the mean zonal flow and amplitudes of Waves 1 and 2

become rather independent from the progression of Wave 2 in the vacillation solutions as

r is further reduced.

Around the transition point from vacillation to periodic solution (r = rb � 0.01503),

the orbits of Wave 2 and 1 in the polar diagrams become nearly circular in consistent

with the minima of the variation ranges of the Wave 2 and 1 as shown in Fig. 3. In Fig. 4

(d) for r = 0.016, a perfect circle is drawn by dashed line to show the smallness of the

deviation of the periodic orbit from the steady wave with a constant amplitude. As r

increases, the deviation of the orbits from a circle becomes discernible in Fig. 4 (f) and

(g). The timings when the mean zonal flow has its local maximum or minimum delay in

the phase variations of Wave 2 and 1, as indicated by the counterclockwise shifts of open

circles or plus signs from (d) to (g). The phase relationships between the mean zonal flow

and traveling waves for large r as (g) are similar to those shown in HY04 for B = 6◦ and

r = 0.08: The traveling Wave 1 is almost in phase in longitude with the stationary Wave

1 and traveling Wave 2 at the timing when the mean zonal flow has its minimum value.

Even in the irregular solution (h) for r = 0.09, the mean zonal flow fluctuates rather

periodically, and the trajectories of Wave 2 and 1 in the polar diagrams show systematic

variations associated with eastward propagation of these waves.

The clustering of the symbols indicates that the synchronized phase relationships in

the periodic solutions just before the transition remain in this irregular solution.
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3.4 Power spectra

Power spectral analysis is done to examine the periodic, quasi-periodic, or non-periodic

nature quantitatively in the three regimes obtained in the previous subsection.

Figure 6 shows three power spectral densities for the following time series of six so- Fig. 6

lutions from (a) - (h) given in Figs. 4; (top) the zonal mean relative vorticity, ζ0(φ0 =

62.3◦S, t), (middle) the amplitude of Wave 2 vorticity, |ζ2(φ2 = 62.3◦S, t)|, and (bottom)

the Wave 2 vorticity component at a given point (λ2, φ2) = (0◦, 62.3◦S) which contains

the wave phase information, Re[ ζ2(φ2, t)e
i2λ2 ].

For the vacillation solution (a) without surface topography (V0 with r = 0), both

time series of the zonal mean and the amplitude of Wave 2 have spectral peaks at the

frequency of fA = 2πωA = 0.112 day−1 and its higher harmonics. On the other hand, the

power spectral density for the Wave 2 component at a given point has the largest peak

at fB = 2πωB = 0.0927 day−1 and other peaks at the linear combination frequencies of

fA and fB. These frequencies of the amplitude modulation and the phase propagation

of Wave 2 are incommensurable, so that the polar diagram in Fig. 4 (a) has the torus

structure; this is a fundamental property of quasi-periodic solutions.

The vacillation solutions in the presence of the surface topography (V ) have spectral

peaks at fA, fB, and their linear combinations in all the three power spectra, as shown in

Fig. 6 (b) and (c). The frequency fB corresponding to wave propagation is dominant in the

time series at a given point, while the other frequency fA is dominant in the spectra of the

zonal mean and Wave 2 amplitude for r = 0.008 (b). The power at the wave propagation

frequency fB dominates even in the time series of the zonal mean for r = 0.014 (c).

For the periodic solutions (P ), the flow field changes purely periodically at the fre-
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quency fB of the phase propagation of Wave 2, and thus all the spectra have peaks at

the frequencies of fB and its higher harmonics as shown for r = 0.016 (d) and r = 0.070

(g). Irregular solutions (I) have continuous power spectra with increased power at all the

frequencies as shown in Fig. 6 (h) for r = 0.09. However, spectral peaks still exist around

the frequency fB (∼ 0.11day−1) of the periodic solutions, indicating that the fundamental

feature of the periodic solutions remains in some degree in the irregular solution.

In order to see the variations of the dominant spectral peaks with r more quantitatively,

we show frequency of power spectral peaks in Fig. 7 (top) and corresponding power Fig. 7

spectral density (bottom) for only three components of fA, fB, and fA − fB which are

obtained from the time series of (a) the zonal mean component, (b) the amplitude of

Wave 2, and (c) the amplitude of Wave 1, of the relative vorticity at φ = 62.3◦S. The

frequencies of the dominant peaks of the power spectra do not change very much in the

range of 0 ≤ r ≤ 0.02. The vacillation solution (V0) for r = 0 has a spectral peak only

at fA, and periodic solutions for r > rb � 0.01503 have a spectral peak only at fB. On

the other hand, another type of vacillation (V ) in the presence of the surface topography

(r �= 0) has the spectral peaks at the three frequencies, fA, fB, and fA − fB.

Variations of the power spectral densities for these frequencies with r are very similar

between (a) the zonal mean component and (b) the amplitude of Wave 2. As r increases

from zero, the power spectral density for fA decreases gradually while that for fB increases

much sharply from zero. These two components becomes comparable magnitude around

r ∼ 0.0145, and then the power for fA decreases very sharply to zero as r approaches the

transition point, or the bifurcation point of quasi-periodic solution from periodic solution,

at r = rb � 0.01503. The power for fB increases continuously as r increases beyond rb.

The power spectral densities for these frequencies show a different dependence on r for
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the time series of the amplitude of Wave 1 (c).

4 Diagnosis on regime transitions

As shown in Figs. 6 and 7, some qualitative changes in the time variations of the zonal

mean component and amplitudes of Wave 1 and 2 take place around r = 0 and rb.

The zonal symmetry of the external conditions breaks when the surface topography is

introduced, no matter how r is small. This symmetry breaking of the external forcing

brings a qualitative change in the vacillation solutions from V0 to V . On the other

hand, there is no symmetry breaking of the external forcing around rb, but the transition

from periodic solution (P ) to quasi-periodic vacillation (V ) takes place. In this section,

these regime transitions are diagnosed from the viewpoint of wave-wave interactions based

on a low-order “empirical mode expansion” of the vorticity equation to understand the

fundamental properties of time variations of these solutions.

4.1 A low-order “empirical mode expansion”

In the parameter range described in the previous section, the flow is weakly nonlinear such

that interactions between the zonal mean zonal flow and a limited number of dominant

waves, Wave 1 and 2, determine the time variations of the flow field. If we expand

a dependent variable as X(λ, φ, t) =
2∑

s=0

Xs(φ, t)e
isλ and substitute them into the PV

equation (1), we finally obtain the zonal mean, Wave 1, and Wave 2 components of that
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equation as follows,

∂q0
∂t

= −
{

1

a

∂

∂φ
(v1q1) +

1

a

∂

∂φ
(v2q2)

}
0

, (12)

∂q1
∂t

+
u0

a cosφ

∂q1
∂λ

+
v1

a

∂q0
∂φ

= −{∇ · (u1q2) + ∇ · (u2q1)}1 , (13)

∂q2
∂t

+
u0

a cosφ

∂q2
∂λ

+
v2

a

∂q0
∂φ

= −{∇ · (u1q1)}2 , (14)

after neglecting the source and sink terms on the right hand side of Eq. (1).

Because the patterns of time variations of the zonal mean zonal flow and planetary

waves have large amplitude only in high latitudes with a maximum or a node near φc =

60◦S, as shown in Fig. 2 for example, we can introduce a new meridional coordinate φ′ to

represent those with a couple of “empirical modes” as follows:

φ′ � (φ− φc)π/∆φ, (15)

X(λ, φ, t) =

2∑
s=0

2∑
m=1

Xm
s (t)ei(sλ+mφ′), (16)

where ∆φ(� 30◦) is a meridional extent of the variations, s a zonal wavenumber, and m

a meridional mode number.

There is no mathematical rigorousness of this low-order expansion, but we can argue

triad wave interaction in the weakly nonlinear dispersion theory reviewed in HY04 more

easily with a simple double Fourier expansion. Note that the expansion in spherical

harmonics is not effective in the present situation because the variations are confined in

middle and high latitude of a hemisphere.

For the interactions in such a low-order system obtained by a double Fourier expan-

sion, we can rely on a classic theory on the mechanics of vacillation in a rotating annulus

experiment with radial differential heating by Lorenz (1963) and the studies on the bi-

furcation properties of a barotropic or two-layer baroclinic flow over topography by the

senior author of this paper (Yoden 1983a, b; Yoden 1985a, b).
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4.2 Topographic effect on vacillation around r = 0

The vacillation solution (V0) without topography at r = 0 is described in the low-order

“empirical mode expansion” as

ψ0 � ψo0 = C1
0e

iφ′
+ A2

0e
iωAtei2φ′

, (17)

ψ1 = ψo1 = 0, (18)

ψ2 � ψo2 =
{
C1

2 + A1
2e

iωAt
}
ei(2λ+φ′−ωBt). (19)

The components with coefficients C1
0 and C1

2 constitute a steady-wave solution with a

constant Wave 2 propagation with angular frequency ωB, while those with A2
0 and A1

2

represent the periodic variation of the flow field with another frequency ωA. In this

notation, energy exchange between the mean zonal flow (A2
0) and Wave 2 (A1

2) with

the angular frequency ωA takes place through the triad wave-mean flow interaction in

association with the component of steady Wave 2 (C1
2). These components satisfy three

wave resonance relationship: (0, 2)±(2, 1) = (2, 1), where (s,m) is the wavenumber vector.

A schematic diagram of possible interactions between these components can be found in

Fig. 1 in Yoden (1983b).

Assuming the independence of the steady-wave components on r and the linear growth

of forced stationary Wave 1 with r from Fig. 3, that is,

|C1
0 | ∝ r0, and |C1

2 | ∝ r0, (20)

|S1
1 | ∝ r, (21)

for small r, we can argue triad interactions which produce the modulation of vacillation

due to the surface topography, and estimate the dependence of the modulation on r.

(I) The wave-wave interaction between the stationary Wave 1 (S1
1) and the steady east-
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ward traveling Wave 2 (C1
2) with the angular frequency ωB produces the eastward

traveling Wave 1 (B2
1) with the same frequency ωB. As the amplitude |B2

1 | is pro-

portional to |S1
1 ||C1

2 | from the right-hand-side of Eq. (13), it is proportional to r

from Eqs. (20) and (21). This relationship is schematically written as

S1
1(∝ r) C1

2 (∝ r0) ⇒ B2
1(∝ r)ei(λ+2φ′−ωBt), (22)

where the inside of parentheses denotes the dependence of the amplitude on r.

(II) The interference between the stationary Wave 1 (S1
1) and the generated traveling

Wave 1 (B2
1) produces the fluctuation of the zonal mean component (B1

0) with the

angular frequency ωB. The amplitude |B1
0 | is proportional to |S1

1 ||B2
1| from the

right-hand-side of Eq. (12). Thus, the term B1
0 increases as r2:

S1
1(∝ r) B2

1(∝ r) ⇒ B1
0(∝ r2)ei(φ′+ωBt). (23)

(III) The wave-mean flow interaction between the steady eastward traveling Wave 2 (C1
2)

and the generated zonal mean fluctuation (B1
0) produces the second mode of east-

ward propagating Wave 2 (B2
2) with amplitude modulation with the angular fre-

quency ωB. The amplitude |B2
2 | is proportional to |C1

2 ||B1
0 | from the left-hand-side

of Eq. (14) and increases as r2:

C1
2 (∝ r0) B1

0(∝ r2) ⇒ B2
2(∝ r2)eiωBtei(2λ+2φ′−ωBt). (24)

In summary, these terms influenced by the surface topography are added to the original

vacillation solution, Eqs. (17) ∼ (19), for small r,

ψ0 � ψo0 +B1
0(∝ r2)ei(φ′+ωBt), (25)

ψ1 � ψo1 +B2
1(∝ r)ei(λ+2φ′−ωBt), (26)

ψ2 � ψo2 +B2
2(∝ r2)eiωBtei(2λ+2φ′−ωBt). (27)
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In order to see the dependence on r as stated above directly, the power spectral densities

for the frequencies fA (plus sign) and fB (closed circle) shown in Fig. 7 are replotted in

Fig. 8 on a double logarithmic chart. Both of the power of the zonal mean component Fig. 8

(a) and that of the amplitude of Wave 2 (b) for the angular frequency ωB (closed circle)

increase with r along the line r4. On the other hand, the power of the amplitude of Wave

1 (c) for the angular frequency ωB increases with r along the line r2. These power laws

are consistent with the above arguments, indicating both B1
0 and B2

2 are proportional to

r2 while B2
1 is proportional to r.

4.3 Bifurcation of vacillation solution at r = rb

Transition from a periodic solution (P ) to vacillation (V ) takes place at rb � 0.01503

as r is reduced from above as shown in Fig. 5. Because the external forcing is constant

with time in this experiment, this could be a bifurcation of quasi-periodic solution with

two incommensurable angular frequencies ωA and ωB from a periodic solution with ωB.

We diagnose this transition by the low-order “empirical mode expansion”, describing a

periodic solution above rb as

ψ0 � ψp0 = C1
0 (∝ r0)eiφ′

+B1
0(∝ r2)ei(φ′+ωBt), (28)

ψ1 � ψp1 = S1
1(∝ r)ei(λ+φ′) +B2

1(∝ r)ei(λ+2φ′−ωBt), (29)

ψ2 � ψp2 =
{
C1

2(∝ r0)eiφ′
+B2

2(∝ r2)eiωBtei2φ′
}
ei(2λ−ωB t). (30)

For r > rb, these components fluctuate at the angular frequency ωB through the wave-

wave and wave-mean flow interactions as described in the previous subsection.

We assume a Hopf bifurcation at rb. When a Hopf bifurcation takes place, generally

a small amplitude limit cycle bifurcates from a fixed point of a dynamical system when
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the fixed point loses stability with respect to a time-periodic perturbation. Near the

bifurcation point, the amplitude of the limit cycle increases in proportion to the square

root of the increment of the bifurcation parameter. In the present case, the periodic

solution with a frequency ωB becomes a fixed point after making Poincare map for the

periodic orbit, so that periodic modulation with another frequency ωA appears as a result

of the Hopf bifurcation. Assuming an increase of the amplitude modulation of eastward

traveling Wave 2 by the square root law as,

A1
2(∝ (rb − r)1/2)eiωAtei(2λ+φ′−ωBt), (31)

near the bifurcation point rb with r < rb, we can argue triad interactions which are asso-

ciated with this amplitude modulation, and estimate the dependence of the modulation

on (rb − r).

(i) The interaction between the steady eastward traveling Wave 2 (C1
2 ) and the am-

plitude modulation of Wave 2 (A1
2) produces the fluctuation of the zonal mean

component (A2
0) with the angular frequency ωA. The amplitude |A2

0| is proportional

to |C1
2 ||A1

2| from the right-hand-side of Eq. (12). Thus, the term A2
0 increases as

(rb − r)1/2:

C1
2(∝ r0) A1

2(∝ (rb − r)1/2) ⇒ A2
0(∝ (rb − r)1/2)eiωAtei2φ′

. (32)

(ii) The wave-wave interaction between the stationary Wave 1 (S1
1) and the amplitude

modulation of Wave 2 (A1
2) generates the modulation of the eastward traveling Wave

1 (A2
1) with the angular frequency ωA. The amplitude |A2

1| is proportional to |S1
1 ||A1

2|
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from the right-hand-side of Eq. (13), and it increases as (rb − r)1/2:

S1
1 (∝ (rb − (rb − r))) A1

2(∝ (rb − r)1/2) ⇒ A2
1(∝ rb(rb − r)1/2)eiωAtei(λ+2φ′−ωBt).

(33)

In summary, these amplitude modulation terms with the angular frequency ωA are

added to the periodic solution, Eqs. (28) ∼ (30), for small (rb − r),

ψ0 � ψp0 + A2
0(∝ (rb − r)1/2)eiωAtei2φ′

, (34)

ψ1 � ψp1 + A2
1(∝ (rb − r)1/2)eiωAtei(λ+2φ′−ωBt), (35)

ψ2 � ψp2 + A1
2(∝ (rb − r)1/2)eiωAtei(2λ+φ′−ωBt). (36)

To confirm this relationship, the power spectral densities for the frequency ωA are plotted

against (rb − r) for r < rb on a double logarithmic chart in Fig. 9. Fig. 9

All of the power spectral densities of the zonal mean component (a) and the amplitudes

of Wave 2 (b) and Wave 1 (c) for the angular frequency ωA increase in proportion to

(rb − r) along dashed lines from the bifurcation point rb. These power laws support that

the transition from periodic solution (P ) to vacillation (V ) is due to the Hopf bifurcation

at rb for decreasing r.

5 Discussion

In the previous section, our attention was focused on the parameter range of small r to

diagnose the regime transition, in which the forced stationary Wave 1 is much smaller

than that of traveling Wave 2. In the real SH stratosphere, however, the amplitude of the

stationary Wave 1 is comparable to or larger than that of the traveling Wave 2. In HY04,

the periodic solution for B = 6◦ and r = 0.08 (denoted by P ∗ in Table 1) was taken as
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an example similar to the observation. For the real atmosphere and the cases for large

r in the present study, the periodic fluctuation of the zonal mean zonal flow is basically

explained by the energy and enstrophy exchanges with Wave 1, while it is mainly due

to the exchanges with Wave 2 for small r. The enstrophy exchange between the mean

zonal flow and the Wave 1 becomes dominant for about r > 0.05 at B = 4◦. As shown

in Fig. 3, there are some systematic changes in the zonal mean zonal flow and Wave 2

around r ∼ 0.05. The maximum value in the mean zonal flow fluctuation increases with

r for r
<∼ 0.05 while it is roughly constant for r

>∼ 0.05. The variation range of Wave

2 and the amplitude of stationary Wave 2 increase for r
<∼ 0.05 while these decrease for

r
>∼ 0.05. On the other hand, the amplitude of stationary Wave 1 and the variation range

of Wave 1 increase for all the ranges shown in Fig. 3.

As analyzed for the real SH stratosphere in HY04, rather periodic variations of the

polar vortex due to the wave-wave interactions are often observed in late winter, and

the existence of the eastward propagating Wave 2 as well as the stationary Wave 1 is

the key factor that determines whether such variations are observed or not. The large

activity of the eastward traveling Wave 2 is related to a barotropically unstable profile or

weakly stable one of the mean polar night jet as shown in Fig. 15 (b) in HY04. As the

season evolves from early winter to late winter in the SH, the polar night jet in the middle

stratosphere becomes strong due to its shift to poleward and downward (Shiotani et al.

1993). In the parameter setting for the prescribed polar night jet in the present study,

φ0 = 55◦ and B = 4◦ with r = 0, it is barotropically stable for small U while it becomes

unstable to have steady-wave solutions for U = 180 and 210 ms−1 and vacillation solutions

for 240 and 270 ms−1 as shown in IY95. In the presence of surface topography with a finite

value of r, stationary-wave solutions are obtained for barotropically stable polar night jet
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with small U . The seasonal evolution of the SH middle stratosphere can be mimicked

by increasing U with transitions from stationary-wave solution to irregular solution via

periodic solution. In early winter eastward traveling Wave 2 is not active because of the

weak polar night jet, while it becomes active in late winter and then periodic variations

of the polar vortex due to the wave-wave interaction between the traveling Wave 2 and

stationary Wave 1 are observed.

As shown in Figs. 1 and 2, most of the wave disturbances are confined in high latitudes

for the parameter ranges of this study, even though the fluid is assumed to fill the spherical

domain. Such a situation of the confinement within the polar cap is rather similar to the

rotating annulus experiment with radial differential heating (e.g., Hide and Mason, 1975).

Some of the laboratory experiments have been performed in order to study the wave-wave

interactions between azimuthally propagating waves due to baroclinic instability and sta-

tionary waves forced by bottom topography (e.g., Li et al. 1986; Bernardet et al. 1990;

Risch and Read 2005a, b). Bernardet et al. (1990) performed experiments with time

independent topography of azimuthal wavenumber 2 and obtained some examples of spa-

tial modulation of the traveling baroclinic waves and topographically induced vacillations.

Although the observations of the variations of flow field in space and time were limited,

the dynamical situations of these cases in the laboratory experiment may be similar to

those analyzed in the present study with a low-order “empirical mode expansion”. The

expansion into normal modes is more rigorous for the annulus experiments, as in Lorenz’s

(1963) work, compared to that in this paper because of the rigid side boundaries. Further

observation of the flow field in space and time in this kind of laboratory experiments

with bottom topography and analysis based on the mode expansion will bring deeper

understanding on the wave-wave interactions that were investigated in this study.
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6 Concluding remarks

Weakly nonlinear aspects of a barotropically unstable polar vortex in a forced-dissipative

system with a zonally asymmetric surface topography were investigated with a spheri-

cal barotropic model in terms of wave-wave interactions. Two experimental parameters

adopted in this study are the normalized amplitude, r, of the sinusoidal surface topogra-

phy of zonal wavenumber 1, which forces a stationary planetary wave of zonal wavenumber

1 (Wave 1), and the width, B, of the prescribed zonally symmetric jet, which controls the

eastward propagating Wave 2 generated by the barotropic instability. A parameter sweep

experiment (summarized in Table 1) showed the predominance of periodic solution in a

wide parameter space. In the periodic solutions, variations of the zonal mean zonal flow

and topographically forced Wave 1 synchronize with the periodic eastward propagation of

Wave 2 through the nonlinear triad interactions among these waves and the mean zonal

flow. The predominance of the periodic solution is consistent with frequent observations

of such rather periodic variations of the Southern Hemisphere stratospheric polar vortex

due to the triad interactions (Hio and Yoden 2004).

Vacillation in the presence of surface topography is complicated because of the modu-

lation of the zonal mean zonal flow and wave amplitudes with the frequency of the Wave

2 phase propagation as described in Section 3. Detailed investigation of the transition

from vacillation to periodic solution as the increase of r gives a deeper understanding of

the periodic solutions in the presence of surface topography. The wave synchronization

is explicitly shown in the polar diagrams of the complex amplitude of Wave 1 and 2 in

Figs. 4 and 5. It was also diagnosed by the low-order “empirical mode expansion” in

Section 4. The dependence of the spectral powers on r shown in Fig. 9 is well explained
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by a limited number of nonlinear triad interactions among the zonal mean, Wave 1, and

Wave 2 components, as summarized by Eqs. (28) ∼ (30) and (34) ∼ (36). These results

are indicative of the usefulness of the low-order “empirical mode expansion” as a diagnosis

tool. Refinement and application of such a method to study the variations of the polar

vortex are interesting subjects for our future work. For example, if we could construct a

low-order dynamical system based on such mode expansion, the diagnosis done in Section

4 would have a sound theoretical basis.
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Table 1: Regime diagram as a function of B and r. List of the symbols is given below.

See text for details. The periodic solution for the parameters B = 6.0◦ and r = 0.08

(denoted by P ∗) was investigated in details in HY04. Regime transitions depending on r

at B = 4.0◦ (in bold characters) is examined in Section 3.2.

r\B [◦] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 9.0 10 11 12 · · ·

0. V0 V0 V0 V0 V0 V0 S S S S S S S S N · · ·

0.02 V V P P P P P P P P P Sta Sta Sta Sta · · ·

0.04 P P P P P P P P P P P Sta Sta Sta Sta · · ·

0.06 P P P P P P P P P P P Sta Sta Sta Sta · · ·

0.08 I I I P P P P ∗ P P P P Sta Sta Sta Sta · · ·

0.10 I I I I I P P P P P P Sta Sta Sta Sta · · ·

N no-wave sol.

S steady-wave sol. ψ2(λ, φ, t) = C2(φ)ei(2λ−ωP t)

V0 vacillation sol. ψ2(λ, φ, t) = {C2(φ) + A2(φ)eiωAt}ei(2λ−ωP t)

Sta stationary-wave sol. ψ1(λ, φ) = S1(φ)eiλ

P periodic sol. ψ1(λ, φ, t) = S1(φ)eiλ + {C1(φ) +B1(φ)eiωBt}ei(λ−ωBt)

ψ2(λ, φ, t) = S2(φ)ei2λ + {C2(φ) +B2(φ)eiωBt}ei(2λ−ωB t)

V vacillation sol. (in the presence of surface topography)

I irregular sol.
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Figure Captions

Figure 1 Time averaged structure of the eastward traveling Wave 2 (bottom right)

and time evolution of its amplitude modulation component (other seven figures) for

the vacillation solution with B = 4◦ and r = 0. The PV field is scaled by Ω and the

contour interval is given by cont. Zero lines are not drawn and the areas where the

value is smaller than − cont are shaded.

Figure 2 (a) Time averaged structure of traveling Wave 2, (b) stationary Wave 1, and

(c) traveling Wave 1 for the periodic solution with B = 4◦ and r = 0.02. Contour

interval is given by cont. Zero lines are not drawn and the areas where the value is

smaller than − cont are shaded.

Figure 3 Time mean (denoted by dot) and variation range (vertical bar) of the zonal

mean zonal flow (a), PV amplitude of the traveling Wave 2 (b), and that of Wave

1 (c) at 62.3◦S plotted for the external parameter r with B = 4◦. Solid lines in (b)

and (c) show the amplitude of stationary Wave 2 and 1, respectively. Downward

arrows a - h at the top in panel (a) indicates the points shown in Figs. 4 and 6.

Figure 4 Time variation of the zonal mean zonal flow at 65.1◦S (top), a polar diagram

of the complex amplitude of Wave 2 at φ2 (middle), and that of Wave 1 at φ1

(bottom) for eight values of r (a - h) with B = 4◦. The latitude φs where the

amplitude of the traveling wave of wavenumber s has its maximum is shown in each

panel. The symbols (◦) and (+) indicate the phase at the time when the zonal mean

zonal wind reaches its local maximum and minimum, respectively.

Figure 5 Same as Fig. 4, but around the transition point. (a)r = 0.0145, (b)r =
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0.01500, (c)r = 0.01502, and (d)r = 0.01504.

Figure 6 power spectral density for the time series of the zonal mean component of PV

at φ = 62.3◦S [×Ω2 day] (top), the amplitude of Wave 2 at φ = 62.3◦S (middle), and

the Wave 2 component containing phase information at a point (λ, φ) = (0◦, 62.3◦S)

(bottom), for six values of r with B = 4◦: (a) r = 0, (b) r = 0.008, (c) r = 0.014,

(d) r = 0.016, (g) r = 0.07, and (h) r = 0.09.

Figure 7 Frequencies of the spectrum peak (top) and corresponding power spectral

density (bottom) for only three components of fA (plus sign), fB (closed circle), and

fA − fB (diamond) which are obtained from the time series of (a) the zonal mean

component, (b) the amplitude of Wave 2, and (c) the amplitude of Wave 1, of the

relative vorticity at φ = 62.3◦S.

Figure 8 Same as Fig. 7 (bottom), but plotted on a double logarithmic chart. Only

two components of fA (plus sign) and fB (closed circle) are shown.

Figure 9 Same as Fig. 7 (bottom) only for fA component (plus sign), but plotted

against (rb − r) on a double logarithmic chart for r < rb.
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Figure 1: Time averaged structure of the eastward traveling Wave 2 (bottom right) and time

evolution of its amplitude modulation component (other seven figures) for the vacillation solution

with B = 4◦ and r = 0. The PV field is scaled by Ω and the contour interval is given by cont.

Zero lines are not drawn and the areas where the value is smaller than − cont are shaded.
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Figure 2: (a) Time averaged structure of traveling Wave 2, (b) stationary Wave 1, and (c)

traveling Wave 1 for the periodic solution with B = 4◦ and r = 0.02. Contour interval is given

by cont. Zero lines are not drawn and the areas where the value is smaller than − cont are

shaded.
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Figure 3: Time mean (denoted by dot) and variation range (vertical bar) of the zonal mean

zonal flow (a), PV amplitude of the traveling Wave 2 (b), and that of Wave 1 (c) at 62.3◦S

plotted for the external parameter r with B = 4◦. Solid lines in (b) and (c) show the amplitude

of stationary Wave 2 and 1, respectively. Downward arrows a - h at the top in panel (a) indicates

the points shown in Figs. 4 and 6.
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Figure 4: Time variation of the zonal mean zonal flow at 65.1◦S (top), a polar diagram of

the complex amplitude of Wave 2 at φ2 (middle), and that of Wave 1 at φ1 (bottom) for eight

values of r (a - h) with B = 4◦. The latitude φs where the amplitude of the traveling wave of

wavenumber s has its maximum is shown in each panel. The symbols (◦) and (+) indicate the

phase at the time when the zonal mean zonal wind reaches its local maximum and minimum,

respectively.
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Figure 5: Same as Fig. 4, but around the transition point. (a)r = 0.0145, (b)r = 0.01500,

(c)r = 0.01502, and (d)r = 0.01504.
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Figure 6: power spectral density for the time series of the zonal mean component of PV at

φ = 62.3◦S [×Ω2 day] (top), the amplitude of Wave 2 at φ = 62.3◦S (middle), and the Wave 2

component containing phase information at a point (λ, φ) = (0◦, 62.3◦S) (bottom), for six values

of r with B = 4◦: (a) r = 0, (b) r = 0.008, (c) r = 0.014, (d) r = 0.016, (g) r = 0.07, and (h)

r = 0.09.

38



Figure 7: Frequencies of the spectrum peak (top) and corresponding power spectral density

(bottom) for only three components of fA (plus sign), fB (closed circle), and fA−fB (diamond)

which are obtained from the time series of (a) the zonal mean component, (b) the amplitude of

Wave 2, and (c) the amplitude of Wave 1, of the relative vorticity at φ = 62.3◦S.
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Figure 8: Same as Fig. 7 (bottom), but plotted on a double logarithmic chart. Only two

components of fA (plus sign) and fB (closed circle) are shown.
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Figure 9: Same as Fig. 7 (bottom) only for fA component (plus sign), but plotted against

(rb − r) on a double logarithmic chart for r < rb.
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