

- Hadley cell (subtropical jet)
- Self organization
 - baroclinic eddies within broad baroclinic zones
 - beta-plane turbulence
- Instabilities of/interactions among modes

VARIABILITY OF JETS

Null hypothesis: purely stochastic
variations decay on dissipation timescale
Feedbacks

- good bet for a self-organized jet
- reddens spectrum of variability

ANNULAR MODES

- Structure and short-time decay rate set by tropospheric dynamics
 - Features recognizably similar to annular modes occur in models with no stratosphere and no ocean
 - Interaction with stratosphere reddens spectrum in some seasons
 - Interaction with ocean probably necessary to explain interannual & longer timescales
- ** Not zonally symmetric, but exhibiting strong projection on zonal mean
 - NAO projects on zonal mean

"THEORY" OF ANNULAR MODES

* Vertically integrated wave zonal wind and wave activity

 $\frac{dU}{dt} = \nabla \cdot \mathbf{F} - \frac{U}{\tau} \quad \frac{dA}{dt} + \nabla \cdot \mathbf{F} = S - D$ ** Average over time (a month) $U \sim (S - D)\tau$ Sources and sinks of wave activity have stochastic and mean-flow-organized components $S = s(U) + \varepsilon$ D = D(U, A)# Annular mode is stochastically driven

variability of self-organized jet. Need theories for S(U) and D(U,A)

PV MIXING/**PV** STAIRCASES

* A general model for jets?

- Where does it *not* apply?
- How to go from descriptive to predictive theory?

Organizing principle for Jovian jets?

ANTARCTIC CIRCUMPOLAR CURRENT - POSSIBLE PARADIGM

Baroclinicity (available potential temperature) of ACC created as Ekman drift tilts isopycnals

- Resulting flow is baroclinically unstable
- Baroclinic eddies drive self-organizing jets

Jets are anchored by topography

TROPOSPHERE-STRATOSPHERE COUPLING

Troposphere influences stratosphere through upward propagating waves

- Perhaps not as well understood as we like to think interaction between boundary (land-sea contrast and topography) forced waves, and waves generated by nonlinear interactions of synoptic eddies (cf. Scinocca and Haynes)
- Growing evidence that stratospheric dynamics influences tropospheric dynamics
 - Seasonality of timescales and Norton's modeling results shown by Mark Baldwin

Many mechanistic model results
 Mechanism?

DEEP OCEAN JETS

Are real

Rare example of prediction from a numerical model leading to discovery in observations

Mechanisms?

JETS AND TRACER TRANSPORT

Jets are barriers to transport, because of:

- Shear zones on jet flanks
- In geophysical setting, eastward jets have critical lines away from jet center

Deep ocean jets should be detectable in tracer distributions

GENERAL QUESTION #1

What, if anything, do initial value problems tell us about the behavior of forced dissipative systems?

- Decaying turbulence
- Baroclinic lifecycles

GENERAL QUESTION #2

- What does the internal variability of a system tell us about its response to forcing?
 - E.g. can we predict the annular mode response to global warming?

GENERAL QUESTION #3

* Why is it so difficult, in GFD, to develop successful *predictive* theories?

• Even for simple systems, such as the twolevel QG model