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Abstract

The histories of numerical weather prediction and atmospheric predictability research are briefly re-
viewed in this article in celebration of the 125-year anniversary of the foundation of the Japan Meteoro-
logical Society. The development of numerical weather prediction in the 20th century has been inti-
mately related to the progress of dynamic meteorology as stated in Section 1, including the development
of the quasi-geostrophic system that is a basic tool to describe large-scale balanced flow approximately
and the discovery of chaos that is the key concept of atmospheric predictability. In the 1990s, the rapid
advancement of computer technology brought a regime shift in the predictability research from funda-
mental theoretical works with simple nonlinear dynamical systems (Section 2) to practical applied works
with operational numerical weather prediction models (Section 3). Ensemble forecasts became in opera-
tions in major forecast centers at the end of the 20th century. Some current challenges in the atmo-
spheric predictability research under THORPEX (THe Observing system Research and Predictability
EXperiment) program are summarized in Section 4, such as targeted observations, new data-
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assimilation techniques, and interactive grand global ensemble forecasts.

1. A historical perspective

a. Fledgling period of numerical weather
prediction

Historical review of numerical weather pre-
diction (NWP) and atmospheric predictability
research could be started by referring to the
paper published over a century ago by Bjerknes
(1904). He considered the problem of weather
prediction from the standpoint of mechanics
and physics and proposed it as a deterministic
initial value problem based on the physical
laws such as the conservation of mass, momen-
tum, and energy. The first trial of NWP was
done by Richardson (1922) employing a finite
difference method, not graphical methods, to
deal with the governing partial differential
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equations. His unrealistic prediction of surface
pressure change of 145 hPa over 6 hours after
enormous amount of calculations by hand is
now attributable to imbalance in the initial
data used by him but not to his method (Lynch
1999).

A quarter of a century later, “Richardson’s
dream” of NWP came true by the development
of electronic digital computer that provided a
means of processing enormous amount of
calculations within affordable time span (e.g.,
Thompson 1983; Wiin-Nielsen 1991; Cressman
1996; Lynch 2002). In the late 1940s, Electronic
Numerical Integrator And Computer (ENIAC)
was developed at Princeton’s Institute for Ad-
vanced Study (IAS), and it was used for attack-
ing the problem of NWP by the Meteorological
Research Group (Platzman 1979). Charney
et al. (1950) succeeded in 24-hour forecasts
computed from actual data at the 500 hPa level
over and around North America with a simpli-
fied barotropic vorticity equation model.

In the fledgling period of NWP, there were
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Fig. 1.

significant associations and contributions from
the meteorological research community in
Japan. In Jule Charney’s recollections on the
period of ENIAC (Platzman 1990, page 53),
one can find a description on the visits of the
director general, Kiyoo Wadati of the Japan
Meteorological Agency (JMA), and Professor of
Meteorology, Shigekata Shono of University of
Tokyo. Kanzaburo Gambo, who succeeded Pro-
fessor Syono in the 1970s, was invited to work
at the IAS as a research associate from 1952 to
1954 (Lewis 1993). After his return to Japan
with infectious excitement about the challenges
to NWP, Syono and Gambo coordinated the re-
search group of NWP in Tokyo. JMA started
operational NWP in 1959, after the first real-
time operational NWP in Sweden in 1954 and
the second in the US in 1955 (Kalnay 2003).

A milestone in that period was the first inter-
national symposium on NWP held in Tokyo
on 7-13 November 1960 (Fig. 1; Syono 1962).
There were over 50 participants from abroad
in the field of dynamic meteorology and NWP,
including Jule G. Charney, Arnt Eliassen,
Ragner Fjgrtoft, Hsiao-Lan Kuo, Edward N.
Lorenz, Yale Mintz, Jerome Namias, Norman
A. Phillips, George W. Platzman, Joseph Sma-
gorinsky and others. “Looking back, it is fair to
say that the meeting was one of the epoch-
making events in the history of NWP”, as Akira

Group photo of the first International Symposium on Numerical Weather Prediction held in
Tokyo on 7-13 November 1960 (Syono, 1962).

Kasahara said (Lewis 1993). The international
symposium provided the opportunity for “tal-
ented young scientists in Japan to meet in
person many of the leading scientists who at-
tended”, and consequently it was an epoch-
making event which facilitated exodus of Japa-
nese meteorologists to the United States in
those days; there were presentations by Akio
Arakawa, Tetsuya Fujita, Akira Kasahara,
Yoshio Kurihara, Kikuro Miyakoda, Yoshimitsu
Ogura, Yoshikazu Sasaki, and Michio Yanai,
some of whom attended from the United States.

b. Lorenz’s discovery of chaos

At the international symposium in Tokyo,
Edward Lorenz presented a paper titled “The
statistical prediction of solutions of dynamical
equations” (Lorenz 1962, 1993). He demon-
strated that statistical predictions based on
linear regression methods become inadequate
beyond a few days, by applying the methods to
irregular nonperiodic solutions obtained nu-
merically in a set of 12-variable ordinary differ-
ential equations (ODEs) that was a highly trun-
cated spectral model of a two-layer baroclinic
fluid. It is interesting to note the discussion on
the exponential growth of a small initial error
in the nonperiodic solutions to answer the ques-
tion, “Did you change the initial condition just
slightly and see how much different results
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were in the forecasting in this way?” asked by
Bert Bolin. Lorenz’s presentation in Tokyo was
a prelude to his most famous and influential
paper published in 1963.

By using a “personal” computer Royal-McBee
LGP-30, Lorenz (1963) investigated nonperi-
odic solutions in the minimum system of 3-
variable nonlinear ODEs derived from the
equations on thermal convection. He found that
the nonperiodic solutions are unstable so that
slightly differing initial states can evolve into
considerably different states within a limited
time. This sensitivity to initial conditions is a
fundamental nature of chaos in later terminol-
ogy. Sometimes chaos is regarded one of the
three great revolutions in the 20th-century
physical sciences in addition to relativity and
quantum mechanics, because chaos cut away
at the tenets of Newton’s physics and elimi-
nated the Laplacian fantasy of deterministic
predictability (Gleick 1987).

Lorenz (1963) illustrated a chaotic solution
obtained by numerical time integrations as a
trajectory in 3-dimensional phase space, which
is now well known as the Lorenz attractor
(Fig. 2). Such illustrations of the Lorenz attrac-
tor can be found popularly in textbooks on
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Fig. 2. Trajectory of the Lorenz attractor
for the standard parameters of ¢ = 10,
r=28 and b=8/3 in a three-
dimensional perspective and the distri-
bution of the Lorenz index defined by
Eq. (6) for the optimization interval
of 1=t —tr) = 0.1 (Mukougawa et al.

1991).
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chaos, nonlinear science, and predictability
(e.g., Sparrow 1982; Drazin 1992; Glendinning
1994; Sprott 2003; Palmer and Hagedorn
2006). Actually, it was the early 1970s that
James Yorke, a distinguished applied mathe-
matician who gave the science of chaos its
name, discovered Lorenz (Li and Yorke 1975;
Gleick 1987). Since then, Lorenz’s pioneering
work published in 1963 in the Journal of the
Atmospheric Sciences became well known in
a wider community of chaos and nonlinear
science. Edward Lorenz received the 1991 Kyoto
Prize! for his establishment of the theoretical
basis of weather and climate predictability, as
well as the basis for computer-aided atmo-
spheric physics and meteorology. At the com-
memoration workshop titled “From Weather
Forecasting to Chaos”, I had a chance to make
a presentation on “Local Lyapunov stability
and atmospheric predictability” (Yoden and
Nomura 1993), which was largely dependent
on his theoretical works on atmospheric pre-
dictability as summarized in Section 2.

c. Chaos, turbulence, and predictability
theories

In 1983 three international conferences on
chaotic phenomena, turbulence, and predict-
ability in fluids were held in North America,
Furope, and Asia: American Institute of
Physics Conference at La Jolla Institute, U.S.
in February (Holloway and West 1984), Inter-
national School of Physics (Enrico Fermi)
Course at Varenna on Lake Como, Italy in
June (Ghil et al. 1985), and International Sym-
posium of the International Union of Theoret-
ical and Applied Mechanics in Kyoto, Japan, in
September (Tatsumi 1984). The last one was
the first international meeting that I partici-
pated in (Yoden and Hirota 1984).

Turbulence is a disordered flow characterized
by complicated and irregular fluid motions
in time and space. Traditionally statistical ap-
proaches had been taken in theoretical studies
on turbulence with stochastic tools, although
fluid turbulence is a deterministic phenomenon
governed by the Navier-Stokes equations. Even
for a deterministic system, unpredictability and
randomness is introduced by the nonlinearities

1  http:/www.inamori-f.or jp/laureates/k07_b_edward/
prf_e.html
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of the equations and an extremely large num-
ber of spatial degrees of freedom which is
needed to describe the motion (e.g., Lesieur
1997). From the 1970s to 80s, the development
of chaos theories in nonlinear dynamical sys-
tems had introduced a new approach to the
problem on the onset of turbulence.

Hydrodynamic instabilities and turbulence
had been extensively studied for more than a
century, while in the 1970s—80s the situation
of their research was changed dramatically by
the use of computers in numerical analyses of
nonlinear systems and in laboratory experi-
ments (e.g., Swinney and Gollub 1981). Chaos
theory, or dynamical systems theory, had clari-
fied the problem of the onset of turbulence (e.g,
Ruelle and Takens 1971; Read 2001). The char-
acteristic time that determines sensitivity to
initial conditions should decrease as the num-
ber of degrees of freedom of system increases,
and it is so short in fully developed turbulence
with a large number of degrees of freedom that
unpredictability and randomness are intro-
duced even for a deterministic system.

A change in the small-scale structure in tur-
bulence will, in due time, produce a change in
the large-scale structure, and we can expect
that in a few hours or a day the imperceptible
manipulation of a little devil has resulted in a
change of the atmospheric turbulence on a
scale of kilometers (Ruelle 1991). Beyond that,
large-scale atmospheric motions are not fully
developed turbulence, but coherent structures
exist, such as fronts, tropical and extratropical
cyclones, blocking highs, jet streams, planetary-
scale waves, and so on. The time needed for the
amplification of a small-scale observational
error to a globally different situation is esti-
mated to be one or two weeks. The successes
and failures of NWP in extended range are the
empirical basis of predictability theory (Ghil
et al. 1985).

d. Advancement of NWP

In the 1960s and 70s, sensitivity to the initial
conditions had been argued in the predictabil-
ity theories under perfect-model assumption.
In those days, however, NWP models were far
from perfect, and much effort had been made
to improve the models. There were many im-
portant contributions by Japanese scientists
to the improvements, including novel and sta-
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ble finite-difference methods developed in the
1960s, such as the Kurihara (1965) grid, the
Arakawa (1966) Jacobian and the Matsuno
(1966) scheme, and sophisticated parameteriza-
tion schemes of sub-grid scale phenomena de-
veloped in the 1970s, such as the Arakawa and
Schubert (1974) cumulus parameterization and
the Mellor and Yamada (1974) turbulence clo-
sure models for planetary boundary layers.

In addition to the improvements of NWP
models, the advancement of computer technol-
ogy, such as computational speed and memory
size, has continued from the early era. Compu-
tational speed has an exponential growth from
3 x 102 FLOPS (FLoating point number Opera-
tions Per Second) of ENIAC to 10'* FLOPS
over the last half century. Now the Earth Sim-
ulator! in Yokohama, which was the fastest
supercomputer in the world from 2002 to 2004,
has the total peak performance of 40 TFLOPS
and the total main memory of 10 TB.

Figure 3 shows the evolution of mean fore-
cast skill at the European Centre for Medium-
Range Weather Forecasts (ECMWEF) for the
northern and southern hemispheres for the pe-
riod of 1981-2004 (Shapiro and Thorpe 2004).
Forecast skill is judged with some measures
of forecast errors defined by the difference be-
tween the forecast and analysis for a given ver-
ification time. Here “analysis” means an initial
condition estimated from observed data. The
forecast errors are caused by two factors: (1)
the imperfection of the model and (2) the
growth of errors included in the initial condi-
tions. The latter is the main concern of the
chaos theory. Continual improvements in
medium-range weather forecasts are due not
only to the improvements of NWP models and
the advancement of computer technology,
mainly associated with the reduction of the fac-
tor (1), but to the increase of observation data
over the globe, including satellite measure-
ments, and the development of advanced tech-
niques of data assimilation and ensemble fore-
cast, mainly associated with the reduction of
the factor (2).

e. Forecast skill variations and their prediction
As the medium-range forecasts had become
skillful, growth of errors included in the initial

1 http:/www.es jamstec.go.jp/esc/eng/index.html
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Fig. 3. Evolution of mean forecast skill for the extratropical northern and southern hemispheres for
the period of 1981-2004 (Shapiro and Thorpe 2004). Shading shows differences between hemi-
spheres in anomaly correlation of 3, 5, and 7-day ECMWF 500-hPa height forecasts.

conditions by observations and analysis became
a real problem in operational NWPs. Lorenz
(1982) computed the growth of forecast error,
i.e., the difference between forecast and anal-
ysis, for 10-day forecasts at ECMWF averaged
over a 100-day period (thick curve in Fig. 4).
He also computed the mean growth of the dif-
ference between two forecasts verifying at the
same time, but started from initial conditions
that are one (k — j=1) day apart (the lowest
thin curve), two day apart, and so on. The
mean growth of small differences can be as-
sumed as

dE

2
= E — bE~*, (1)
where E is an ensemble mean of small differ-
ences and ¢ is time. The constant ¢ measures
the exponential growth rate of small differ-
ences, and the quadratic term halts the growth
with ¢ > 0 and b > 0 (i.e., nonlinear saturation
of the error growth). Based on the estimate of
the doubling time of small errors as 2.5 days

with Eq. (1) and the data used for plotting Fig.
4, Lorenz (1982) concluded that forecasts of
instantaneous weather patterns nearly two
weeks in advance appear to be possible. Fur-
ther arguments on the mean growth of global
forecast errors can be found in Lorenz (1985)
and Kalnay and Livezey (1985).

The growth of small initial errors varies in
time and space because of the nature of flow-
dependent predictability. It has been widely
recognized that NWP models show large time
variations in skill in medium-to-extended
range. Figure 5 shows recent examples of one-
month ensemble forecasts which show high
gensitivity to the initial condition for the pre-
diction of stratospheric sudden warming event
in December 2001 (Mukougawa et al. 2005).
There is a clear difference in the divergence of
ensemble members among the three different
forecast periods. Prolonged predictability is ob-
served during the period of a stratospheric sud-
den warming event (Fig. 5¢), while all members
diverge rapidly during the onset period of the
sudden warming event (Fig. 5b).
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Fig. 4. Growth of forecast error for opera-
tional 10-day forecasts at ECMWF
averaged over a 100-day period (Lorenz
1982). Global root-mean-square 500-
hPa height differences [m] between
Jj-day and k-day forecasts for the
same verification day, for j < k, plotted
against k. Some values of j-k are shown
beside the points. Thick curve connects
the difference of the k-day forecast and
analysis (j = 0), while thin curves con-
nects the spread between j-day and
k-day forecasts.

JMA started operational medium-range (8-
day) forecast every day in March 1988, and Ki-
moto et al. (1992) investigated skill variations
in the first winter. They compared skill varia-
tions of 7-day forecasts at JMA with those at
ECMWF and at the U.S. National Meteorolog-
ical Center (NMC; the direct precursor to the
National Centers for Environmental Predic-
tion, NCEP) and noticed correlated variations
among all the different models (Fig. 6). They
studied the common poor skills at the end of
January and their association with a typical
blocking phenomenon over the North Pacific
(i.e., forecast divergence prior to the onset of
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Fig. 5. Time variation of the spread of
the JMA one-month ensemble forecasts
for the period of a stratospheric sudden
warming event in December 2001 (Mu-
kougawa et al. 2005). Zonal mean tem-
perature at 10-hPa and 80N for the
analysis is plotted from 20 November
2001 through 20 January 2002 (thick
solid line) and those for ensemble fore-
casts (thin solid lines) from (a) 28 and
29 November, (b) 5 and 6 December,
and (c) 12 and 13 December.

blocking), and argued that the poor skills re-
flected temporal variations in atmospheric pre-
dictability, not common deficiencies for a par-
ticular circulation pattern.

Large time-variations in skill in medium-to-
extended range NWPs raised a challenge of
forecasting forecast skill. There had been some
early trials on operational skill forecasting
(e.g., Kalnay and Dalcher 1987; Palmer and Ti-
baldi 1988; and references therein). In those
days, the lagged average forecast (LAF) method
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Fig. 6. Evolution of the root-mean-square
errors (RMSEs) for the extratropical
northern hemisphere (>20N) at three
operational centers in the winter 1988—
89 (Kimoto et al. 1992). RMSE of 7-day
500-hPa height forecasts for JMA (thick
solid line), ECMWF (dotted line), and
NMC (thin solid line) are plotted after
applying 5-day running average. The
abscissa is the verification date, day 1
being 1st in December 1988.

(Hoffman and Kalnay 1983) was an operation-
ally feasible “ensemble forecast” method with-
out extra computer resources. The LAF method
provided a priori estimates of forecast skill be-
cause there was a strong correlation between
the dispersion of the ensemble members and
the loss of predictability. Kimoto et al. (1992)
also proposed a new method to give a linear
measure of forecast spread, in which a tangent
linear equation of a hemispheric barotropic
model was used to make a singular value anal-
ysis (see Section 2) with forecasted reference
fields.

However, the advancement of computer tech-
nology was so fast that these methods became
obsolete soon. The new era of operational en-
semble forecasting has come in the early 1990s,
although the prediction of predictability is still
a theoretical challenge even now (e.g., Zieh-
mann et al. 2000).

f. Ensemble forecast as an application of
chaos theory
The prediction problem of forecast uncer-
tainty can be investigated theoretically in
terms of the Liouville equation that governs
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the time evolution of the probability density
function (PDF) of a state vector of a given dy-
namical model (Ehrendorfer 1994a, 1994b,
1997). Such an approach is, however, not prac-
tical in forecasting forecast skill in NWP with a
model which has an extremely large number of
degrees of freedom. A related concept more
readily applicable to operational NWPs is sto-
chastic dynamic prediction with some closure
assumptions on the PDF, firstly proposed by
Epstein (1969). A recent example of the impact
of a random effect of probabilistic terms is
the “stochastic parameterization” of unresolved
processes that is related to the PDF of model
error (e.g., Palmer 2001, 2002a). The stochastic
parameterization is another way to represent
model uncertainty in ensemble forecasts, com-
pared with multi-parameter-value ensembles
or multi-model ensembles which will be briefly
mentioned in the next section.

Leith (1974) investigated the theoretical
skill of Monte Carlo approximations to the sto-
chastic dynamic prediction. In a Monte Carlo
approach, a large ensemble of initial conditions
is generated by random sampling of the initial
PDF and time integrations from each initial
condition are done to estimate the evolution of
the PDF. In the operational NWP contexts, the
initial condition should be given by a form with
a PDF which represents small errors intro-
duced by observations and analysis.

Random sampling of the initial PDF is not ef-
ficient in operational NWP contexts because of
the large degrees of freedom of the NWP
models. A sufficiently large sample size is nec-
essary to obtain reliable estimates of the evolu-
tion of the PDF. In the early 1990’s, the chaos
theory that describes time evolutions of initial
small perturbations in nonlinear dynamical
systems had been applied to operational NWPs
to generate an optimal set of initial conditions
that represents the initial PDF (e.g., Mureau
et al. 1993; Toth and Kalnay 1993). The sample
size was set to the order of 10, a plausible num-
ber in operational NWPs, by using such meth-
ods as to generate dynamically conditioned per-
turbations. The term “ensemble forecast” is
often used in a limited sense as such, and its
concise summary is given in Section 3. A histor-
ical review on roots of ensemble forecast can
also be found in Lewis (2005). Recent topics on
predictability in weather and climate, including
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ensemble systems for forecasting predictability,
are thoroughly reviewed in a book edited by
Palmer and Hagedorn (2006).

Further challenges in atmospheric predict-
ability research beyond the success of ensemble
forecast are now taken under the international
research program of THORPEX (THe Observ-
ing system Research and Predictability EXper-
iment) to accelerate improvements in the ac-
curacy of one-day to two-week high impact
weather forecasts for the benefit of society, the
economy, and the environment (Shapiro and
Thorpe 2004; Rogers et al. 2005; WMO 2005a).
Some of the fundamental and important as-
pects of the THORPEX are described in Section
4.

2. Theories on atmospheric
predictability

a. Lyapunov stability

Lorenz (1965) pioneered in constructing a
fundamental framework of the growth of small
errors superposed on a reference solution for a
prescribed finite time interval. A general treat-
ment of the concept for infinite time interval
was independently provided by Oseledec (1968).
The Oseledec theorem, which is well known in
the community of chaos and nonlinear science,
implies that nearby trajectories, separated ini-
tially by a small distance in phase space, will
separate exponentially at a rate given by the
Lyapunov exponent (see Section 2.¢). It is a
global property of attractor and can be used for
classifying each attractor. A positive value of
the Lyapunov exponent indicates an exponen-
tial loss of correlation between two nearby tra-
jectories, which gives the mathematical defini-
tion of chaos. For further material on the
Lyapunov stability, see textbooks on nonlinear
dynamical systems, e.g., Guckenheimer and
Holmes (1983).

Local or finite-time Lyapunov exponent was
introduced in the same framework as Lorenz
(1965) to study the local property of attractor
(e.g., Goldhirsch et al. 1987; Abarbanel et al.
1991). The finite-time Lyapunov stability anal-
ysis has been applied to fully developed model
turbulence (Ohkitani and Yamada 1989; Kida
et al. 1990) and to atmospheric predictability
(e.g.,, Lacarra and Talagrand 1988; Farrell
1990; Houtekamer 1991; Mukouga et al. 1991;
Yoden and Nomura 1993; Molteni and Palmer
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Fig. 7. Illustration of the evolutions of a
reference solution x(¢) and small per-
turbations superposed on it at an initial
state #y projected onto x;-x; plane in
phase space. See text for details.

1993; Trevisan and Legnani 1995; Anderson
1996; Yamane and Yoden 1997, 2001; Trevisan
and Pancotti 1998).

b. The growth of small errors: Lorenz (1965)
Let us consider a nonlinear dynamical sys-
tem of dimension n:

4w = i),

x(t) = ea(t), ..., xa ()] " € R™, (2)

where ( )7 denotes transpose. A solution of the
system, x(¢), is uniquely determined by setting
an initial state x(#y) and is called a reference
solution, which is given by a trajectory in phase
space as illustrated in Fig. 7.

An infinitesimally small perturbation x(z)
superposed on the solution x(¢) obeys the tan-
gent linear equation of Eq. (2):

9 y(6) = SOl (o). 3)

where J[x(¢)] is the Jacobian matrix, J[x(¢)] =
(0f/0%),_y4)- The solution of Eq. (3) can be
written in the form of a linear transformation
with an n x n matrix M(¢1,¢y) as

¥(t1) = M(21,20)¥(20). (4)

The matrix M(#1,¢) is referred to as the error
matrix.

Lorenz (1965) described the linear evolution
of isotropic random perturbations with the
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error matrix. An isosurface of the PDF of initial
perturbations is an n-dimensional sphere with
a radius ¢ as illustrated in Fig. 7. According to
Eq. (4), this sphere is deformed into an ellipsoid
at t; =£p + 7, and the length and direction of
semiaxes of the ellipsoid are given by the sin-
gular values and vectors of the transpose of the
error matrix M7 (¢1,4,) (Lorenz 1965; Yoden
and Nomura 1993); if the symmetric matrix
M(t1,%0) MT(tl, tp) has non-negative eigen-
values {I'?} and eigenvectors {;}, the lengths
of the semiaxes of the ellipsoid are {¢I;} and
the directions of the semiaxes are {{;} (Fig. 7).

If we define the amplification rate of a per-
turbation y(to) from ¢y to ¢; as

_ [IM(t1,£0)y(t0) ||

}’(tl,to,y{to)) = ”y(t())” 3 (5)
with a norm | - ||, then the root-mean-square
amplification rate of the perturbations distrib-
uted equally in phase space at ¢ = ¢y is given
by the root-mean-square of singular values of
the error matrix M(t1,%p) (Lorenz 1965). This
quantity, denoted as «(¢1,%p), has been referred
as the Lorenz index and used as a standard
measure of the perturbation growth:

n ri
oftnto) = /23 L= TOM) g
i=1

c¢. Lyapunov exponents and vectors

If the singular values and vectors of the error
matrix M(¢1,f9) are denoted as {exp[4;z]} and
{f;}, respectively, then the finite-time Lyapu-
nov exponents {4;} can be written as

Ai(®(to), 7) = % log||M(#1,20) fi(x(t0), D)l (7)

for an initial state x(¢y) and a finite time in-
terval ¢ (Goldhirsch et al. 1987; Yoden and No-
mura 1993). Nearby trajectories separated ini-
tially by a small distance in the direction of f;
will separate in time at a rate exp[4;f] as illus-
trated in Fig. 7. If we take a limit of t — o in
Eq. (7), the limit becomes independent of the
initial state to have a global property of the at-
tractor. It is this limit of Eq. (7) that gives the
definition of the Lyapunov exponents. Thor-
ough explanation of the Lyapunov exponents
and vectors and their finite-time version can be
found in e.g., Legras and Vautard (1996) and
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Kalnay (2003), although there is some confu-
sion about the terminology. The vectors {f;}
are called as the forward (right, initial, ...) sin-
gular vectors, or simply, the singular vectors
(SVs), while {{;} are the backward (left, final,
evolved, . ..) singular vectors.

d. A simple example of the variation of error
growth

We illustrate the time variation of error
growth and the use of some measures defined
above with a simple example of the Lorenz
(1963) system of a 3-variable nonlinear dynam-
ical system (a set of ODEs). A trajectory of the
Lorenz attractor for the standard parameters
of =10, r =28 and b =8/3 is shown as a
three-dimensional perspective in Fig. 2. The
Lyapunov exponents for this example are com-
puted! as J; = 0.90563,0, and —14.57219, with
which the Kaplan-Yorke (Lyapunov) dimension
of the attractor is obtained as Dgy = 2.06215
(Sprott 2003). Thus, the well known character
of the Lorenz attractor is reconfirmed that it is
a chaotic system (13 > 0) with a fractal dimen-
sion of the attractor slightly greater than 2.

The finite-time  Lyapunov  exponents
{4i(t1,t0)} and the Lorenz index «(¢1,%) can be
computed on the Lorenz attractor for a given
optimization interval 7. Figure 2 also shows
the distribution of the Lorenz index o(¢,%,) for
a short time interval 7 = 0.1 (Mukougawa et al.
1991). The time variation of predictability can
be recognized as phase-spatial organization
of the Lorenz index; the error growth is large
in the bottom part of the attractor that is close
to the origin. More intuitive presentation of the
local variation of predictability on the Lorenz
attractor is given in Palmer (1993, Fig. 4). How-
ever, the Lorenz index does not always show
distinct relationship with the unstable station-
ary points denoted by dots, contrary to the sug-
gestion of a dynamical role of quasi-stationary
states, which can be generated by the unstable
stationary points, in the time variation of pre-
dictability (e.g., Legras and Ghil 1985). The
Lorenz index increases monotonically during
quasi-stationary states only in one-dimensional
dynamical system, while there is no such

1 Lyapunov Exponent Spectrum Software by
Sprott (2005) is found at http:/sprott.physics
.wisc.edu/chaos/lespec.htm
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unique relationship in multi-dimensional sys-
tems (Yamane and Yoden 1997).

e. Application to systems with large
dimension

If the system is not very large, we can obtain
the error matrix directly by repeating the time
integration of the nonlinear dynamical system
(2) n-times from a new initial condition with a
small perturbation y(#y) which has non-zero
value only in the i-th component for 1 <i <n
(Lorenz 1965). Using this procedure to obtain
the error matrix of n = 1848, Yamane and Yo-
den (2001) computed all singular values and
vectors of the n x n matrix numerically for the
finite-time Lyapunov stability analysis. Under
current computing facilities, a larger system
with 0(10*) degrees of freedom could be ana-
lyzed by this straightforward method.

For operational NWP systems with O(10%~7)
degrees of freedom, however, it is neither prac-
tical nor meaningful to obtain all the singular
values and vectors, because a large part of
them could be associated with small-scale dis-
turbances with small amplification rate for the
optimization interval of a few days. Lacarra
and Talagrand (1988) used the adjoint of the
tangent linear equations (3) and iterative Lanc-
zos algorithm for symmetric matrices to deter-
mine the largest singular value and vector in a
barotropic model. Houtekamer (1991) estimated
that 150 model runs are necessary to obtain 50
of the largest singular values and correspond-
ing vectors with the adjoint method.

Mureau et al. (1993) firstly applied the ad-
joint method as a means of providing dynami-
cally conditioned perturbations for ensemble
forecasting at ECMWF (see also the next sec-
tion). Figure 8 shows an example of the hori-
zontal structure of the leading singular vector
used in operational ensemble forecasting, taken
from a review paper on ensemble forecasts by
Buizza (2001). As in general cases (Buizza and
Palmer 1995), the initial perturbation is local-
ized in a region of storm track cyclogenesis
with most amplitude in the lower troposphere
(left panels) and propagates into the jet to have
peak amplitudes in the upper troposphere at
the optimization time of 2 days (right panels).

Yamane and Yoden (2001) also proposed a
new efficient method to estimate growing per-
turbations for a finite-time interval by making
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a singular value analysis on a subspace
spanned by grown Lyapunov vectors with non-
negative exponents. The method could be ap-
plied for operational NWPs, because the dimen-
sion of the subspace is expected to be much
smaller than the dimension of the whole sys-
tem.

f- Some recent progress

Aurell et al. (1997) introduced a finite-size
Lyapunov exponent which measures the growth
rate of finite-size perturbations and investi-
gated the predictability problem in three-
dimensional turbulence with a wide spectrum
of temporal scales. They found a universal scal-
ing law in a range where the perturbation is
still small compared to large-scale fluctuations,
but large compared to the smallest dynamically
active scales. The predictability of a flow which
possesses many scales of motion was originally
investigated by Lorenz (1969) with a simple
mathematical model which describes a one-
dimensional cascade of error energy in a wide
range of wavenumbers derived from a two-
dimensional vorticity equation. The scale inter-
actions in predictability experiments were ex-
amined by Tribbia and Baumhefner (2004)
with an atmospheric general circulation model
(GCM) and showed distinctive differences from
the classical inverse cascade picture of predict-
ability error growth; the error growth eventu-
ally asymptotes to an exponential growth of
baroclinically active scales.

The applicability of information theory for
predictability studies has been investigated by
utilizing some predictability measures based
on information-theoretical principles, such as
the predictive power (Schneider and Griffies
1999), ignorance (Roulston and Smith 2002),
and relative entropy (Abramov et al. 2005). By
introducing a measure of sample utility in a
relative entropy framework, Haven et al. (2005)
estimated uncertainties in predictions coming
from relatively small sample size of a forecast
ensemble in a non-Gaussian framework.

Smith et al. (1999) investigated the dynamics
of an initial uncertainty in the state of a chaotic
system during the early states of its evolution.
Judd and Smith (2001, 2004) further investi-
gated uncertainty in estimation of the initial
state when there is observational error, with
the perfect or the imperfect model scenario.
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SV 1(T)/Z SOOhPa 1997- 01 -20 12h

Fig. 8. Singular vector analysis done at ECMWTEF (Buizza 2001). Most unstable singular vector grow-
ing between 18 and 20 January 1997 is shown for temperature component with gray shadings at
500 hPa (top panels) and 700 hPa (bottom panels) for the initial time (left) and final time (right).
Contour are for geopotential height [dam] for each pressure level.

They showed the existence of a set of states
indistinguishable from the true state and the
necessity of probabilistic approach to forecast-
ing the indistinguishable states. They also pre-
sented a new method for calculating the maxi-
mum likelihood estimate of the true state to
perform ensemble forecasts. Judd et al. (2004)
applied the shadowing analysis based on these
theories of indistinguishable states to an opera-

tional NWP system in order to reveal its useful-
ness to identify the model and analysis errors
and to obtain better analyses and forecasts.

3. Ensemble numerical weather
predictions

a. From chaos to weather forecasting
The title of the 1991 Kyoto Prize Workshop
was “From Weather Forecasting to Chaos” in
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honor of Lorenz’s discovery of chaos in the field
of weather forecasting, but the situation in the
early 1990’s was quite opposite; it was a period
characterized by “From Chaos to Weather Fore-
casting”. There were intensive efforts to de-
velop a modern operational system of ensemble
NWPs based on the chaos theory.

Finite-time Lyapunov stability stated in the
previous section is a tangent linear theory of
small errors included in the initial condition.
As the errors become finite amplitude, the non-
linear effects become important and the PDF of
random errors is not any more an ellipsoid at
the stage of ¢t =ty + tnz as shown in Fig. 7.
The time interval during which the linear as-
sumption is valid is dependent on the magni-
tude of the initial errors and the degree of in-
stability of the system around the initial state.
It would be about a day or less in current oper-
ational global NWP models. An ensemble NWP
is only the plausible way to evaluate the error
growth in the nonlinear phase under the cur-
rent computing facilities. Note that the average
of a limited number of ensemble members is
not necessarily close to the state corresponding
to the maximum of PDF in the nonlinear phase.
Such an example of the nonlinear phase will be
shown in Section 4.e.

b. Generation of initial ensembles based on
the chaos theory

In the past when computer resources were
limited, some simple methods of ensemble
NWPs had been proposed such as the LAF
method (Hoffman and Kalnay 1983). The num-
ber of ensemble members was very limited and
the randomness of the sampling of initial en-
sembles was not necessarily guaranteed. There
was no principle or guideline to determine
the initial ensembles efficiently under the limi-
tation of ensemble members for operational
NWP models with large degrees of freedom of
0(107).

Several methods to generate the initial per-
turbations of ensemble members had been
developed at operational centers in medium-
range weather forecasts in the early 1990’s.
One is the singular vector (SV) method devel-
oped at ECMWF (Mureau et al. 1993; Molteni
et al. 1996) and another is the breeding method
developed at NCEP (Toth and Kalnay 1993,
1997). These methods are based on the
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chaos theory that describes the growth of small
initial perturbations in nonlinear dynamical
systems.

In the SV method, a limited number of sin-
gular vectors f; given in Eq. (7) corresponding
to the leading singular values are added to or
subtracted from the control initial state ob-
tained in the regular analysis by setting the
amplitude comparable to the observational er-
rors. The leading singular vectors are computed
by an iterative Lanczos procedure using the ad-
joint model of a simplified version of the fore-
cast model, as the dimension of the models is
too large to deal with the error matrix practi-
cally. In the breeding method, on the other
hand, “bred grown” vectors are used; the bred
vectors are the vectors that have been bred for
a long time in the analysis cycle, and corre-
spond to the leading {;s in the linear limit.

The advantage of the SV method is that the
ensemble members diverge rapidly with time,
which seems to be important when the number
of ensemble members is limited, while the ad-
vantage of the breeding method is that the ini-
tial ensemble members tend to be restricted on
the attractor of the real atmosphere. Detailed
comparison of these methods has been done;
for example, Szunyogh et al. (1997) made a di-
rect comparison of SVs and bred vectors in a
low-resolution GCM and noted their relation-
ship. However, it remains controversial which
method is better or not for generating the ini-
tial perturbations of ensemble members. Ham-
ill et al. (2000) also compared these methods
and an alternative method of perturbed obser-
vation (PO) (Houtekamer and Derome 1995),
which approximates a random sample from the
analysis PDF by using a Monte Carlo-like ob-
servation system simulation experiment to ob-
tain initial perturbations. They showed better
performance of the PO method and its new abil-
ity to improve data assimilation techniques,
by using a quasi-geostrophic channel model
coupled with a 3D-variational data assimilation
scheme. :

c. Operational medium-range ensemble
forecasts
ECMWF developed and implemented an en-
semble prediction system (EPS) based on the
SV method in December 1992, while NCEP in-
troduced a breeding EPS operationally in the
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Table 1. Available ensemble prediction systems. This table is a simplified and updated version of a
table in the report on the first TIGGE workshop (WMO 2005b) which summarizes some key char-
acteristics of the global ensemble prediction systems run operationally. Abbreviations in the
column of Perturbation method are as follows: SV: Singular Vectors, BV: Bred Vectors, EOF: Em-
pirical Orthogonal Functions, EnKF: Ensemble Kalman Filter,

SYSTEM (country) Runs [/day] Resolution Lead Time [hr] Members [/run] Pert. method
BMRC (Australia) 2 TL119 240 33 SVs

CMA (China) 1 T106 240 33 SVs+BVs
CPTEC (Brazil) 2 T126 360 ‘ 15 EOF
ECMWEF (EU) 2 TL255 240 51 SVs
FNMOC (USA) 1 T119 240 17 BVs

JMA (Japan) 1 TL159 216 51 BVs

KMA (Korea) i T106 192 17 BVs

MSC (Canada) 1t TL149 240 17 EnKF
NCEP (USA) 4 T126-T62 384 11 BVs

same month (Kalnay 2003). The Meteorological
Service of Canada (MSC) started operational
daily ensemble forecasts in January 1996 with
the PO method and replaced it with the ensem-
ble Kalman filter method (EnKF, see Section
4.d) in January 2005. Intercomparison of these
global EPSs was done by Buizza et al. (2005) for
a 3-month period to identify relative strengths
and weaknesses of the three systems.

JMA started a one-month ensemble forecasts
firstly in March 1996; operational forecasts
were done once a week with 10 ensemble mem-
bers, of which initial perturbations were given
by SVs obtained with a simplified linear bal-
ance model. As for medium-range (one-week)
forecasts, JMA operationally started daily en-
semble forecasts based on the breeding method
in March 1999. The two EPSs were unified in
March 2001; since then one-month ensemble
forecasts have been obtained by extended-
range runs of one-week forecasts. Since 2003
all the seasonal forecasts of JMA (3-month and
6-month forecasts) have been also done with
ensemble forecast techniques. JMA upgraded
one-week EPS in March 20061, by increasing
the number of ensemble members to 51 and
the horizontal resolution to TL159 in spectral
form (Table 1).

1 http://www.jma.go.jp/jma/jma-eng/jma-center/mwp/
nwp-top.htm

Nowadays ensemble forecast is a standard
technique in operational centers for medium-
range weather forecasts. Some key characteris-
tics of the operational global EPSs are summa-
rized in Table 1 (WMO 2005b). Nine systems
are in operation in the world with a lead time
from 8 to 16 days and with ensemble members
up to 51. Initial ensemble members are given
by the SV method or the breeding method in
most centers.

d. Multi-parameter-value grand ensembles
Ensemble forecasts from dynamically condi-
tioned initial states as described above are per-
formed assuming implicitly that imperfection of
the forecast model has become small enough
and expecting that the growth of the initial er-
rors can be reduced by ensemble techniques.
However, the small imperfection of forecast
models is not always a relevant assumption.
Some ensemble techniques can be used to
reduce the imperfection of forecast models.
For example, uncertainty in the choice of pa-
rameter values in physical parameterization
schemes has been investigated by perturbing
each parameter value from a standard value in
multi-parameter-value (or, perturbed physics)
ensemble simulations. This ensemble approach
can be justified, because many of the parameter
values are determined empirically without ex-
act physical principle. A grand ensemble (an
ensemble of ensembles) simulation can be done
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by ensemble runs with initial perturbations for
each value of perturbed parameter.

The grand ensemble “prediction” experiment
with the largest ensemble members has been
done by a unique challenge of climateprediction
net! for a longer time scale of global warming
(Stainforth et al. 2005; Piani et al. 2005). Over
108,000 participants from 188 countries (as of
February, 2007) have downloaded an execut-
able version of a full GCM based on the UK
Met Office Unified Model to carry out 45 years
of simulation on their personal computers
and then return their results to the project’s
servers. They are allocated a particular set of
initial conditions and parameter perturbations
to run one member of the grand ensemble sim-
ulation.

e. Multi-model grand ensembles

Forecast models are not perfect for many rea-
sons; not only the choice of parameter values,
but also the choice of physical parameterization
schemes, discrete representations of differen-
tials, model domain (model top for global
models) and resolutions. Although there is no
theoretical way to evaluate uncertainty due to
these factors of model imperfection, there have
been pragmatic trials of grand ensembles with
several forecast models developed in different
NWP centers. For example, correlated varia-
tions of forecast skills among different centers
depending on large-scale flow regimes as shown
in Fig. 6 suggest possible usefulness of multi-
model ensembles. As part of the PROVOST
(PRediction Of climate Variations On Seasonal
to interannual Time-scales) project, a multi-
model grand ensemble experiment was done
with 9-member ensembles for each of four dif-
ferent atmospheric GCMs, providing a promis-
ing result, namely, the multi-model ensemble
was substantially more skilful than individual-
model ensembles (Palmer et al. 2000). The
improvement was largely attributed to the in-
creased ensemble size, though better perfor-
mance of multi-model ensembles is not trivial
mathematically.

Similar multi-model grand ensembles for dy-
namical seasonal prediction were discussed in
the report of comparison of seasonal predictions
done by five state-of-the-art U.S. modeling
groups (Shukla et al. 2000). A multi-model
EPS based on seven global coupled ocean-
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atmosphere models was constructed under the
DEMETER? (Development of a European Mul-
timodel Ensemble system for seasonal to in-
TERannual prediction) project and the results
indicated that the multi-model ensemble was a
viable pragmatic approach to the problem of
representing model uncertainty in seasonal-to-
interannual prediction (Palmer et al. 2004).
Promptness of the data exchange between oper-
ational centers is not a severe requirement in
seasonal predictions because their lead time is
long enough.

For medium-range forecasts, better perfor-
mance of multi-model grand EPS compared to
a single-model EPS has been demonstrated
with operational NWP outputs (e.g., Ziechmann
2000; Matsueda et al. 2006). The better perfor-
mance is likely due to the increased ensemble
size, but it is also strongly dependent on the
performance of each EPS. An important thing
is that such comparison is not straightforward,
because there is no unique measure to evaluate
the “performance” as a general problem. More-
over, additional “cost” to make multi-model
grand ensembles operationally within a limited
time interval should be evaluated, such as data
transfer among forecast centers, additional
computer resources to handle the data, and so
on. This is an optimization problem to con-
struct the best performing multi-model grand
EPS within an affordable additional cost, and
the solution is dependent on the times and the
situation of each operational center.

The North American Ensemble Forecast Sys-
tem?3 (NAEFS) is a new multi-model grand EPS
run jointly by the MSC, the National Meteoro-
logical Service of Mexico, and the U.S. National
Weather Service (NWS). A grand ensemble
with the global forecast models of MSC and
NWS will provide NWP products up to 2 weeks.
The NAEF'S could be regarded as a pilot activ-
ity of TIGGE, the THORPEX Interactive Grand
Global Ensemble (Section 4.e). In the TIGGE
project it is estimated that the total daily data
volume around 200 GB will be routinely trans-
ferred from different centers around the world
to some central data archives with high-speed
data transfer technology.

1 http:/www.climateprediction.net/index.php

2 http//www.ecmwf.int/research/demeter/

3 http:/www.emc.ncep.noaa.gov/gmb/ens/NAEFS
html
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Current operational global EPSs are mostly
designed for medium- or longer-range NWPs
as stated above, while their products could be
used for short-range probability forecasting too
if the data transfer is fast enough. In medium-
range EPSs the leading components of the ini-
tial perturbations are largely associated with
baroclinically unstable synoptic disturbances
as shown in Fig. 8, so that spread of the ensem-
ble members is too little in the short-range of
the predictions. A poor man’s EPS, which con-
sists of a set of NWP forecasts from several op-
erational centers using their own analyses and
models, samples uncertainties in both the ini-
tial conditions and model imperfections (e.g.,
Atger 1999; Ziehmann 2000). As poor man’s
EPS is less prone to systematic biases and er-
rors that cause the underdispersive behavior
in single-model EPSs, it can be used for short-
range probability forecasting of 1 or 2 days
(Ebert 2001, 2002). Recently Arribas et al.
(2005) investigated the ability of a poor man’s
EPS for up to 3 days with 14 models from 9 op-
erational centers, and showed that it is an effi-
cient way of producing ensemble forecasts in
the short range, although the ensemble size is
still limited.

. Ensemble forecasts with mesoscale limited-
area models

The predictability problem associated with
mesoscale phenomena in short-range forecast-
ing is largely different from that of global
medium-range forecasting, because of the im-
portant roles of dry and moist convective
disturbances which grow much faster than
large-scale baroclinic disturbances (e.g., Kalnay
2003). Another factor inherent in mesoscale
forecasting is the lateral boundary conditions,
which might become a basic limitation to
predictability with a limited-area model (e.g.,
Warner et al. 1997).

In the early 1980s, there were some basic re-
searches to apply predictability concepts, which
had been developing in those days, to the mod-
eling and prediction of mesoscale phenomena
(e.g., Anthes 1984; Warner et al. 1984; Anthes
et al. 1985). However, limited-area models
were also in developing stage in those days, so
that early findings were largely influenced by
the poor performance of such models. About a
decade later, finite-time Lyapunov stability
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analysis (or, SV analysis) was firstly applied for
a limited-area, mesoscale primitive-equation
model by Ehrendorfer and Errico (1995) with
the dry-adiabatic version of the National Cen-
ter for Atmospheric Research (NCAR) Meso-
scale Adjoint Modeling System. They investi-
gated domain-internal tangent-linear error
growth and showed that only small fraction
(0.25%) of SVs grows for a 24-hour time in-
terval, and cleared up some confusion on meso-
scale predictability in early days such that the
mesoscale was inherently more predictable
than the larger scales due to strong constraint
by topography and other surface features. SVs
in the same system with moist physics were
investigated and much faster growth of per-
turbations with new structures when com-
pared to dry situation was pointed out by
Ehrendorfer et al. (1999) and Errico and
Raeder (1999).

The importance of moist processes in domain-
internal nonlinear error-growth has been fur-
ther studied by e.g., Zhang et al. (2002, 2003),
Errico et al. (2004), Walser et al. (2004), and
Hohenegger et al. (2006), in some typical situa-
tions with high-resolution nonhydrostatic cloud-
resolving models. Hohenegger et al. (2006) re-
vealed significant loss of predictability occurs
over moist convectively unstable regions that
are able to sustain propagation of energy
against the mean flow. All of these studies are
indicative that both of moisture analysis and
consideration of initial moisture uncertainty
are very important in operational short-range
ensemble NWPs.

Real-time multi-model ensemble forecasts
were performed under the Storm and Meso-
scale Ensemble Experiment (SAMEX) during
May 1998 over the continental U.S. and
central-southern Great Plains (Hou et al. 2001).
A multi-model grand ensemble of 25 members
with four different mesoscale models showed
much better performance than each individual
ensemble system, and the reason was consid-
ered to be its more realistic representation of
the uncertainties in both models and initial
conditions. Currently the Environmental Mod-
eling Center of NCEP is running the Short-
Range Ensemble Forecasting! (SREF) system

1 http:/www.emc.ncep.noaa.gov/mmb/SREF/SREF
.html
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that consists of three models with some differ-
ent convective schemes with 21 grand ensemble
members. A number of university groups in the
U.S. have also attempted mesoscale SREF fo-
cusing on a limited area. For example, 72-hour
forecasts of U.S. Pacific Northwest weather are
produced twice per day at the University of
Washington! (Grimit and Mass 2002). This is a
multi-analysis ensemble system; initial condi-
tions and lateral boundary conditions for a
single mesoscale model ensemble are routinely
obtained from eight operational weather pre-
diction centers worldwide. In Europe, several
limited-area ensemble prediction systems are
run operationally or in research mode (WMO
2005b); Consortium for small-scale modeling
(COSMO) is such an operational system with
the non-hydrostatic limited-area model, Lokal
Modell (Marsigli et al. 2005).

4. THORPEX challenges

a. THORPEX (THe Observing system
Research and Predictability EXperiment)

THORPEX? is a ten-year international re-
search and development program with the im-
plementation phase from 2005 to 2014 in order
to accelerate improvements in the accuracy of
one-day to two-week high-impact weather fore-
casts for the benefit of society, the economy,
and the environment (Shapiro and Thorpe
2004; Rogers et al. 2005; WMO 2005a). The
high-impact weather forecasts are typically as-
sociated with tropical and extratropical cy-
clones with mesoscale disturbances which cause
gusty winds, heavy rainfalls, blizzard snows,
dust-storms, and so on. They also encompass
persistent or slowly varying meteorological con-
ditions that affect heat wave, cold wave, and
drought.

What THORPEX will do is summarized as an
end-to-end forecast system as illustrated in Fig.
9 (WMO 2005a). The combination of basic
and applied research on fundamental issues of
THORPEX is now conducted to develop and
test new observational techniques and systems
including targeted observations, new data as-
similation and prediction systems, and new de-
cision support systems for social, economic, and
environmental decisions. Some highlights in
each item and related topics are subjectively se-
lected and briefly described in the following
subsections.
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b. New observational techniques

Any weather predictions start from observa-
tions of current atmospheric states. Nowadays
large part of meteorological data used in opera-
tional NWPs are obtained by remote sensors
installed on geostationary or polar-orbiting sat-
ellites. Another type of remote sensors are
ground-based precipitation radars and wind
profilers. Traditional measurements at surface
stations over lands and those on ships and
buoys over oceans are important to provide
ground truth and long-term records for climate
monitoring. In-situ upper-air soundings by
radiosondes and commercial aircrafts give ver-
tical profiles of some physical quantities neces-
sary for NWPs.

During the time frame of THORPEX, current
satellite-based imagers and sounders are ex-
pected to have much higher spatial, temporal,
and spectral-band resolutions due to the ad-
vancement of sensor technology. New satellite-
based observation technologies developed and
tested in this decade will be further improved
and utilized for real-time operational NWPs;
such new technologies include active micro-
wave sensors (e.g., NASA WINDS3 for surface
wind-vector measurement over the global
oceans and NASA/JAXA TRMM?* for tropical
rainfall measurement) and GPS-LEQO occulta-
tion soundings for vertical profiles of tempera-
ture and water vapor over the globe (e.g.,
Taiwan-U.S. COSMICS?).

Surface observations and ground-based
upper-air soundings with either in-situ or re-
mote sensors have also been improved drasti-
cally over the last decades by advanced sensing
and communicating technologies and will com-
plement and enhance the utility of satellite
measurements. Some new deployments of
ground-based upper-air sounding systems (e.g.,
radiosondes and rocketsondes), dropsonde sys-
tems (e.g., aircraft and stratospheric balloons),
unmanned airborne vehicles, high-performance
balloons, and so on will become key elements
for interactive forecasting and targeted obser-
vations.

http:/www.atmos.washington.edu/~ens/uwme.cgi
http:/www.wmo.int/thorpex/

http:/winds. jpl.nasa.gov/index.cfm
http:/trmm.gsfc.nasa.gov/
http:/www.cosmic.ucar.edu/index.html

O O =
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c¢. Targeted observations

The concept of targeted (or, more generally,
adaptive) observing strategy had been devel-
oped in association with the implementation
of predictability theories into operational
medium-range ensemble forecasts (Snyder
1996). Sensitivity studies based on tangent
linear analyses in operational NWPs have
shown that the rapid growth of initial errors is
generally localized in relatively small regions
as shown in Fig. 8 and the sensitive regions
vary in location day by day, depending on the
character of the large-scale flow field. If the ob-
servational error in the sensitive regions is
reduced by taking additional observations as
stated in the previous subsection adaptively
within a short enough time interval, improved
forecast skill can be obtained at minimal cost.
Some theoretical arguments on targeted obser-
vations based on singular and bred vectors can
be found in e.g., Palmer et al. (1998), Lorenz
and Emanuel (1998), Bishop and Toth (1999),
and Buizza and Montani (1999).

The practical feasibility and potential impact
of targeted observations was tested in the field
phase of the FASTEX (Fronts and Atlantic
Storm-Track EXperiment) project in January
and February of 1997 (Joly et al. 1999). It was
the first real-time adaptation of the observa-
tions to areas critical to improving predictions
for generation and growth of extratropical cy-
clones. The impact of the targeted observations
was assessed by using the operational models
of NCEP (Szunyogh et al. 1999; Pu and Kalnay
1999), ECMWF (Montani et al. 1999), NOGAPS
(Navy Operational Global Atmospheric Predic-
tion System; Langland et al. 1999; Gelaro et al.
1999), and ARPEGE/IFS (Action de Recherche
Petite Echelle Grande Echelle/Integrated Fore-
casting System; Bergot 1999). Montani et al.
(1999) reported the reduction of short-range
(up to day 2) prediction errors with a maximum
of 37% inside the SV verification regions,
though there were some cases when the extra
data degraded the forecasts (e.g., Szunyogh
et al. 1999).

Some targeted observations in association
with TIGGE have been and will be performed
for improving high-impact weather forecasts as
THORPEX Regional Campaigns (TReCs) in
Asia, FEurope, North-America, Southern-
Hemisphere, and combinations of these regions.
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A North Atlantic THORPEX Regional Cam-
paign (NA-TReC) was already conducted from
mid-October to mid-December 2003, including
special observations with dropsondes and ra-
diosondes, and extra data from geostationary
satellites and commercial aircraft. The observa-
tion impact was evaluated by Langland (2005)
using an adjoint-based diagnostic technique.

d. New data assimilation techniques

Data assimilation is a contemporary method
to estimate the initial condition (or, “analysis”
of the current state) for NWP from the current
and past observed data. For details on data as-
similation, see the review article by Tsuyuki
and Miyoshi (2007) in this special issue and
the textbooks by e.g., Daley (1991), Kalnay
(2003), and Evensen (2007). It is an important
component to reduce uncertainty in the initial
conditions, and some statistical methods such
as optimum interpolation had been used to ob-
tain the “best” analysis in the past. In the last
decades, the data assimilation schemes have
been improved very much by their incorpora-
tion in NWP systems under a new discipline
where dynamics is merged with observations,
such as four-dimensional variational data as-
similation schemes (4D-Var). It is superior in
handling asynchronous observational data that
are taken at any time or place rather continu-
ously by e.g., instruments on satellites and air-
crafts. Merging of dynamics and observations
could have multiple meanings in the NWP sys-
tems with 4D-Var, because the adjoint model
developed for 4D-Var can be used to generate
initial perturbations of ensemble forecasts with
the SV method. However, it is necessary to
maintain the adjoint model as the evolution of
the corresponding NWP model, and large ef-
forts are generally required for the mainte-
nance of the highly complicated computational
codes.

Ensemble Kalman filter (EnKF) is a new
stream of assimilation method which unifies
ensemble forecasts and data assimilation. It
was first introduced to a quasi-geostrophic sys-
tem by Evensen (1994) and several innovations
have been done to improve the accuracy and re-
duce the computational cost, such as square
root filters (e.g., Anderson 2001), local ensem-
ble Kalman filter (LEKF) method (Ott et al.
2004), and local ensemble transform Kalman
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Fig. 9. End-to-end forecast system as a future global interactive forecast system (WMO 2005a).
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filter (LETKF) method (Hunt 2006). Recently
developed four-dimensional LETKF was ap-
plied to the atmospheric GCM for the Earth
Simulator for the test of computational effi-
ciency and parameter sensitivity in full global
GCM (Miyoshi and Yamane 2006) and to the
JMA Nonhydrostatic Model for the test of
convective-scale data assimilation and ensem-
ble prediction (Miyoshi and Aranami 2006). In
these studies encouraging results were ob-
tained for the new method as possible opera-
tional systems in the future. The next 5-10
years will show whether EnKF becomes the op-
erational approach of choice, or 4D-Var and its
improvements remains the preferred advanced
data assimilation method (Kalnay et al. 20086).

Another challenge in data assimilation is
“adaptive data assimilation”. Drastic increase
of data amount is expected by high-resolution
satellite-based observations in near future as
stated in Section 4.5. Effective thinning of large
datasets to retain the most useful observations
is an important subject to obtain the best esti-
mation of initial conditions. The same strategy
as target observation can be taken for this
data thinning in operational NWPs. The infor-
mation of time-dependent sensitive regions ob-
tained in generating initial perturbations for
ensemble forecasting will be utilized to retain
high-density data only in the sensitive regions
in the assimilation process.

e. New prediction systems

THORPEX will accelerate improvements of
the accuracy of one-day to two-week weather
forecasts by testing and demonstrating effec-
tiveness of new prediction systems. This in-
cludes the TIGGE project that integrates
developments in observing systems, targeted
observations, adaptive data assimilation, model
improvements, forecast user requirements, and
a multi-model/multi-analysis EPS (Shapiro
and Thorpe 2004; WMO 2005b). Ensemble
techniques stated in Section 3 become key com-
ponents of TIGGE. One of the challenges of
TIGGE is a feasibility study of an interactive
EPS which responds dynamically to changing
uncertainty to forecast errors, including the
use of adaptive observations, variable ensemble
size, and on-demand regional ensembles.

Typhoon EPS recently developed at JMA is
an example of on-demand ensembles for the re-
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gional purpose of typhoon track prediction. A
newly developed SV method with full physical
processes was incorporated into a global en-
semble NWP system with a horizontal resolu-
tion of about 60 km (Sakai and Yamaguchi
2006). Figure 10 shows an example of ensemble
forecasts of typhoon track of HIGOS (T0221) in
late September 2002. A cluster of ensemble
members predicts the track very well, while an-
other cluster shows straight track westward. In
this particular case, the ensemble mean de-
noted by the thick green line is not the best
way to diagnose the typhoon track. Methods
for efficient utilization of ensemble prediction
data are under investigation, such as a strike
probability map, time-series plots at a given
place, and so on. Operational use of the JMA
typhoon EPS will be started in the near
future.

As shown in Fig. 10, ensemble forecasts of
typhoon track occasionally show large uncer-
tainty beyond some limited area; in this case
the tracks diverge around 20N and 135E. If
we can determine the sensitive region for the
forecast around this limited area by the SV
method in a short time interval, some targeted
observations may be deployed to reduce the
forecast uncertainty of the typhoon track, such
as super rapid scan operations! of geostation-
ary satellite, dropsondes, unmanned airborne
vehicles, or something else. Such targeted ob-
servations and refinement of the ensemble fore-
casts of typhoons in the Western Pacific are
under planning as an Asian TReC for the 2008
typhoon season.

f. Decision support systems

Interaction between the makers of weather
forecasts and their users has been rather lim-
ited owing to the gap in communication. In or-
der to enhance the utility and value of weather
forecasts to society, economies, and environ-
mental stewardship, THORPEX will develop
and apply new decision support systems
through user-specific probabilistic forecast
products as illustrated in Fig. 9 (WMO 2005a).
Ensemble forecasts have greater potential eco-
nomic value than corresponding single deter-
ministic forecasts with uncertain accuracy, by

1 http:/www.data.kishou.go.jp/satellite/rapid.html
(in Japanese)
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using probabilistic information as input to
decision-model analyses (Palmer 2002a).

Palmer (2002b) gave some examples of the
commercial application of ensemble forecast-
ing, such as electricity generation, ship route-
ing, pollution modeling, weather-risk finance,
crop yield modeling, and disease prediction. Re-
cently, an early warning system of malaria in
southern Africa based on seasonal forecasts
from DEMETER was developed, relying on the
relationship between climate variation and
malaria incidence through both mosquito vec-
tor dynamics and parasite development rates
(Thomson et al. 2006). The system was success-
fully applied to the prediction of malaria risk in
Botswana with four months lead time. Taylor
and Buizza (2006) used ECMWF ensemble pre-
dictions with 10-day lead time to forecast the
density of the payoff from a weather derivative.
It is a real application of medium-range ensem-
ble forecasts in the financial sectors.

In order to develop such a system to forecast
probabilities of some user-specific measure with
an ensemble NWP system, re-forecast (i.e., ret-
rospective forecasts) dataset over a long period
is necessary to obtain any relationship trans-
lating predicted meteorological parameters
at specific spatial and temporal scales into so-
cietal and economic attributes of the natural
or human environment (Shapiro and Thorpe
2004). A measure based on predicted precipi-
tation, temperature, wind speed, or else should
be related to a specified attribute of energy de-
mand, agricultural production, transportation
efficiency, demands on health services, man-
agement of water resources, decision making
in commodity markets, or else. Ensemble re-
forecasts is a very important dataset not only
for improving weather predictions (Hamill
et al. 2006) but for developing decision support
tools for social, economic, and environmental
decisions.

5. Concluding remarks

The success of numerical weather prediction
represents one of the most significant scientific,
technological, and societal achievements of the
20th century as stated by Shapiro and Thorpe
(2004). It was directly or indirectly related to
the progress in dynamic meteorology and non-
linear mathematical sciences and to the ad-
vancement of computer science and technology,
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and it will remain one of the major challenges
of simulation science with high-performance
computing systems.

Atmospheric predictability research based
on chaos theories has realized operational en-
semble prediction systems, which are highly
sophisticated computing systems. Under the
THORPEX project some further challenges in
predictability research will be taken; develop-
ment of interactive grand global ensemble pre-
diction systems deploying some targeted obser-
vations, unification of ensemble forecasts and
data assimilation with ensemble Kalman filter
technique, development of new decision sup-
port systems within an end-to-end forecast sys-
tem, and so on. The predictability research will
be accelerated through international collabora-
tion among academic institutions, operational
forecast centers, and users of forecast products
(WMO 2005a).

It is my pleasure if this review article
could make some contribution to getting per-
spectives on atmospheric predictability re-
search in the 2nd century of numerical weather
predictions.
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Appendix
List of acronyms

ARPEGE/IFS Action de recherche petite
echelle grande echelle/Inte-
grated forecasting system

COSMIC Constellation observing system
for meteorology, ionosphere,
and climate

COSMO Consortium for small-scale
modeling

DEMETER Development of a European
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ECMWF
ENIAC
EnKF
EPS
FASTEX
FLOPS
GCM
GPS

IAS
JAXA
JMA
LAF
LEKF
LETKF

LEO
MEXT

MSC
NAEFS
NASA
NCAR
NCEP

NMC
NOGAPS

NWP
NWS

ODE

PDF

PO
PROVOST

SAMEX
SREF

SV

multimodel ensemble system
for seasonal to interannual pre-
diction

European Centre for Medium-
Range Weather Forecasts
Electronic Numerical Integra-
tor And Computer

ensemble Kalman filter
ensemble prediction system
Fronts and Atlantic storm-
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THORPEX The observing system research
and predictability experiment

TIGGE THORPEX interactive grand
global ensemble

TReCs THORPEX regional campaigns

TRMM Tropical rainfall measuring
mission

WMO World Meteorological Organi-
zation

4D-Var four-dimensional  variational

track experiment

floating point number opera-
tions per second

general circulation model
global positioning system
Institute for Advanced Study
Japan Aerospace Exploration
Agency

Japan Meteorological Agency
lagged average forecast

local ensemble Kalman filter
local ensemble transform Kal-
man filter

low earth orbit

Ministry of Education, Culture,
Sports, Science, and Technology
Meteorological Service of Can-
ada

North American ensemble fore-
cast system

National Aeronautics and Space
Administration
National Center for
spheric Research
National Centers for Environ-
mental Prediction

National Meteorological Center
Navy operational global atmo-
spheric prediction system
numerical weather prediction
National Weather Service
ordinary differential equation
probability density function
perturbed observation
Prediction of climate variations
on seasonal to interannual
time-scales

Storm and mesoscale ensemble
experiment

short-range ensemble forecast-
ing

singular vector

Atmo-

data assimilation scheme
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