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A series of numerical experiments on two-dimensional decaying turbulence
are performed for a non-divergent barotropic fluid on a [-plane (a tan-
gential plane to a rotating planet with the effect of latitudinally varying
Coriolis parameter f) in order to survey the nature of zonal jet formation
from random initial fields. A parameter 8 = df /d¢ (¢: latitude) is swept
systematically to show the dependence of latitudinal structure of the zonal
jet on its magnitude. Dynamics of such zonal jet formations is investigated
with a weakly nonlinear Rossby wave-zonal flow interaction theory.

1 Introduction

An interesting feature of two-dimensional turbulence, in contrast to ordinary three-dimensional
turbulence, is the emergence of isolated coherent vortices found by McWilliams [1, 2]. Forma-
tion of such coherent vortices is due to a self-organizing mechanism involved in the disorder
two-dimensional motion. As an application to geophysical fluid, Rhines [3] firstly studied the
two-dimensional turbulence on a (-plane, which is a tangential plane to a rotating planet with
the effect of latitudinally varying Coriolis parameter [4], to understand the effect of differen-
tial rotation of the planet on the two-dimensional turbulence. His numerical result showed
anisotropic growth of flow field and emergence of alternating bands of mean zonal flow. These
features due to the (-effect have been reconfirmed in recent numerical studies with much higher
resolution models [5, 6]. They noticed the zonal jet structures persist over many eddy turnover
times. Extremely persistent zonal jets are also observed in quasigeostrophic two-layer (-plane
turbulence forced by an imposed unstable vertical shear [7].

Williams [8] took account of the exact spherical geometry in his numerical experiment on
forced two-dimensional turbulence, aiming at a reproduction of the zonal band structure of
Jovian atmosphere due to the (-effect. He obtained a clear band structure of zonal flow for a
stochastic vorticity forcing. However, both longitudinal periodicity and equatorial symmetry
were assumed in his experiment to reduce the computational domain to 1/16 of the entire
sphere. Advancement of computing facilities in 1990’s enabled us to do these computations
with higher resolutions in full spherical geometry [9-15]. In the decaying turbulence experi-
ments [9, 14], the spontaneous formation of the zonal jets was found in mid- and low-latitudes



for strong rotation cases, in addition to the emergence of a westward circumpolar vortex in
high-latitudes. Such formation of persistent zonal jets was also observed in the forced turbu-
lence experiment [11, 13].

Pattern formation in two-dimensional turbulence on a rotating sphere may be applied for
understanding some phenomena in the real geophysical fluids. The formation of zonal jets
from a random flow field has been considered as a mechanism to explain the band structures
in the atmospheres on the giant outer planets such as Jupiter, Saturn, Uranus and Neptune [8,
16]. Westward zonal flow in high latitudes in the sun [17] has superficial similarity to the
circumpolar vortex obtained in our experiments [9, 11]. Recently numerical study on the solar
tachocline was also done by investigating freely evolving stratified turbulence in a thin rotating
spherical shell [18]. Annular variability observed in both hemispheres of the atmosphere [19,
20] is a modulation in the strength of the circumpolar vortex in the troposphere and lower
stratosphere with intraseasonal and interannual time scales. Variations of the mean zonal
jets with significant barotropic components have much connection with time variations of
meridional and vertical potential vorticity (PV) flux [21], and key dynamics of the annular
variability may be identical with that of the formation of the present circumpolar vortex [22].

Rhines [23] described fundamental mechanisms for the formation of zonal jets on rotating
spheres in some circumstances. One example which is associated with the present subject is
random external stirring of fluid which becomes organized by the [-effect into jets. The role
of Rossby waves in angular momentum redistribution may be important after full nonlinear
upward cascade of turbulent energy in small scales [24].

In this study, we perform a series of numerical experiments on two-dimensional decaying
turbulence for a non-divergent barotropic fluid on a (-plane in order to survey the nature of
zonal jet formation from random initial fields. We choose a (-plane geometry with doubly
periodic boundary conditions, because of simpler dynamical situation than rotating sphere.
Latitudinal dependence of the [-effect and spherical geometry introduce some difficulty to
understand the dynamics, although these characteristics are more relevant to the atmospheres.

2 Numerical Model and Experiments

Freely-evolving two-dimensional non-divergent flow on a f-plane is governed by the following
nondimensionalized vorticity equation:
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where ((z,y,t) is the vertical component of vorticity (= dv/dz — du/dy), (u,v) horizontal
velocity (= (dz/dt,dy/dt)), (z,y) eastward and northward coordinates, t the time, A the
horizontal Laplacian, § nondimensionalized beta (f = fo + By), and v, nondimensionalized
hyperviscosity coefficient. As vy — 0, this equation gives the conservation low of PV (in the
present case it is equivalent to absolute vorticity) ¢ = ¢ + f following Lagrangian motion. If
we introduce a streamfunction ¥(z,y,t) (v = =9y /0y, v = OY/dz), Eq.(1) can be written as
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where J(A, B) is the horizontal Jacobian. As for the boundary condition, we assume a peri-
odic boundary condition in both directions with 27: (z,0,t) = ¥(x, 27, t) and ¥(0,y,t) =

Y(2m,y,t).
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Figure 1: Time evolution of the streamfunction v(z,y,t) and the zonal
mean zonal flow [u](y,t) for t =0 (a), 2 (b), 8 (¢), and 12 (d) in the run of
B = 100. Negative contours of 1) are drawn with broken lines.

A spectral model of Eq.(2) is constructed by a double Fourier expansion (o expli(kz+1y)])
of ¢ with the truncation wavenumber k,, = [,, = 1024. A spectral transform method [25] is
used to compute the nonlinear Jacobian term; grids for the transformation is 4096 x4096. Time
evolution of ¥(z,y,t) is computed from an initial random flow field, of which one-dimensional
kinetic energy spectrum for a scalar wavenumber x is given by
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with v = 1000 and ko = 226. A constant A is set so that the total kinetic energy is 1/2
at t = 0. Time integrations are done until ¢ = 12 by the fourth-order Runge-Kutta method
with the time increment of At = 4 x 10~*. Ten values of § are taken as an experimental
parameter: 3 = 2" x 100 (n = 1,2,---,10). Even for the smallest value of 8 = 100, a
characteristic wavenumber kg = /3/U with U ~ 1, which gives a scale of transition from
turbulence to Rossby-wave motion, is much larger than the lowest wavenumber 1. Large value
of kg supports the soundness of the periodic boundary condition. The hyperviscosity coefficient
is set to v, = 1 x 10719, All of the computations are done in double precision.

3 Results

Figure 1 shows time evolution of the streamfunction ¢(z,y,t) and the zonal mean zonal flow
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[u](y,t) for the run of = 100. Here [a] = Py / adz. Initially the flow field is isotropic, but
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Figure 2: Time evolution of two-dimensional energy spectrum for ¢ = 0
(a), 2 (b), 8 (¢), and 12 (d). Note the wavenumber ranges and tone values
are different between (a,b) and (c,d). Broken lines give the “dumbbell” of
anisotropic wave-turbulence boundary in wave vector space. See text for
details.

vortices become elongated in zonal direction. By ¢t = 8, the zonal wavenumber 1 component
dominates, and typical Rossby-wave motion can be seen in the animations of the streamfunc-
tion field. At the same time, the zonal mean zonal flow develops, and its latitudinal scale
becomes large. The meridional profile of [u] looks similar between ¢ = 8 and 12, which is
indicative of the persistence of the zonal mean zonal flow.

Time evolution of two-dimensional energy spectrum is shown in Fig.2 for the same run of
B = 100. Upward energy cascade to lower wavenumbers takes place initially, and the spectrum
is roughly dependent only on the scalar wavenumber x = v/k? + [2 at t = 2, indicating isotropic
flow field in small scales. However, it is not isotropic in large scales. The two-dimensional
spectrum shows anisotropic distribution in low wavenumbers as pointed out by Vallis and
Maltrud [6]. Broken lines in Fig.2 give the “dumbbell” of anisotropic wave-turbulence boundary
in wave vector space introduced by them:

(k,1) = kg(cos*? 8, cos'/? B sin 9), 0 =tan""(I/k). (4)

Note that the largest components of the spectrum are inside the boundary, although the low-
energy region shows a dumbbell shape in it. These are consistent with the findings in the
spherical geometry experiments [12, 13].

Parameter dependence on 3 is summarized as the time evolution of one-dimensional energy
spectrum(Fig.3). The spectral peak exists at a lower wavenumber than kg, and shifts to higher
wavenumber as [ increases. The one-dimensional spectrum shows a power low roughly between
the peak and kg, and the slope steepens as [ increases: F(k) «x k%, o ~ —4 for = 400, while
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a ~ =5 for f = 12800 at t = 12. Energy density at the lowest wavenumbers is much smaller
than the peak value, indicating the influence of the periodic boundary condition is weak in
these experiments.
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Figure 3: Time evolution of one-dimensional energy spectrum for 10 values
of 8. Vertical broken line gives k3. Broken arrow on the abscissa gives the
energy centroid wavenumber at ¢ = 12, and solid one does that only for
k = 0 component.

In order to relate the present results with the real geophysical fluid, we introduce a length
scale of L = 5 x 10° m, which is roughly the radius of the earth, and the velocity scale U = 10
ms~!. Then a dimensional value of beta becomes * = (U/L*)3, and 3* = 4 x 107" m~*s™!
for f = 100. This value is comparable to that in mid-latitudes of the earth. If we take 8L
as a length scale and pick up only 1/8 in both directions of z and y, then the subset can be
regarded as another series of experiments with smaller value of beta 8* = (U/L?)3/64 for the
same domain size with dimension.



Figure 4 shows meridional profiles the zonal mean zonal flow [u|(y,t) for 16 values of 3,
with four values of overlapping (6* = 4 x 107'" ~ 3.2 x 107! m~'s™!). Meridional scale of
the mean zonal flow decreases as * decreases. The maximum value of |[u]| is about 10 ms™*,

except for three cases of the largest 3 in which ks is not very different from ro.
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Figure 4: Meridional profiles the zonal mean zonal flow [u(y,t) at ¢t = 12
for different value of 5. First 10 plots are enlargement of 1/8 part of the
second 10 plots including the maximum |[u]|.
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Figure 5: Energy centroid wavenumber (short broken line) and that only
for k = 0 component (solid line) at ¢t = 12 for different value of §* with
dimension. Long broken line gives kj. Spectral peak at the initial state are
also marked by closed or open circles.

Figure 5 summarizes the dependence of the meridional scale on 3*. Energy centroid
wavenumber for £k = 0 component is nearly parallel to ks in a wide range of 3*; the meridional
wavenumber increases in proportion to v/5*. In the cases in which kg is not very different from
Ko, the proportionality breaks and the meridional wavenumber becomes much smaller than k.

4 Wave-mean flow interaction

Development of the zonal mean jet is diagnosed with a weakly nonlinear theory of interactions
between Rossby waves and mean flow [24]. We expand each dependent variable with a small
parameter e:

= U+eu +eu® ...

= ev' + v ...

= U+te) + P ...,

= Z+e'+ (D 4 ...,

Substituting these into Eq.(1) and neglecting the viscosity term, we obtain the following O(e)
vorticity equation:
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where § = 3 — 82U/dy?. O(€) enstrophy equation is obtained by multiplying ¢’ to Eq.(5):
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Figure 6: Diagnosis of wave-mean flow interactions for a run with a low-
resolution model (f = 200). (a) time mean of the zonal mean zonal flow
[u](y) for 10 < t < 20, (b) time evolution of the zonal mean zonal flow
[u](y,t), (c) time evolution of d[u]/dt, (d) time mean of B=p3- d?[u] /dy?,
(e) time evolution of the time-change of zonal mean wave activity 9[A]/dt,
and (f) time evolution of the divergence of wave activity flux [V-F] = [v'(].

After some manipulation a wave activity equation is obtained as follows:

0A
—+V-F=0 7

where the wave activity is given by A = ¢2/(2/3) and its flux by F = (UA+(v2—u'%) /2, —u/v).
On the other hand, zonal mean of the zonal momentum equation for O(€®) becomes

0
2 ) - ¢ =0 ®
Eliminating [v'('| = [V - F| in Eqs.(7) and (8), we obtain the conservation law of pseudo-
momentum: 5

o {1+ 4]} =o. (9)

Firstly, interactions between Rossby waves and the zonal mean zonal flow are diagnosed
after the development of the mean zonal flow in a low-resolution model of k,, = [,,, = 128 with
B = 200. Figure 6(a) shows the time mean of the zonal mean zonal flow [u](y) for 10 < < 20,
and (b) shows its time evolution [u|(y,t). The zonal mean jets are well developed by ¢t = 10
and persists robustly over the following period. Deceleration and acceleration of the zonal

mean jets propagate rather constantly in either latitudinal direction as shown in (c¢). The



time-change of the zonal mean wave activity 9[A]|/dt (e) almost compensates d[u|/dt, and
is associated with the divergence of wave activity flux V - F' (f). These plots indicate the
usefulness of the wave-mean flow interaction theory in diagnosing the time variation of the
zonal mean jets after their development.

5 Concluding remarks

The formation of zonal jets in two-dimensional decaying turbulence on a -plane is investigated
in a wide parameter range of 3. Their latitudinal scale becomes small as < 1//3. Extremely
persistent nature of the jets is reconfirmed in the present study with a high-resolution model.
A weakly nonlinear Rossby wave-zonal flow interaction theory is a useful tool to diagnose the
time variation of the zonal mean jets after their development. It is our next step to apply this
tool to predict the latitudinal position and timing of the zonal jet formation.
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