Stratospheric water vapor: an important climate feedback

Antara Banerjee¹, Gabriel Chiodo¹, Michael Previdi², Lorenzo Polvani^{1,2}

¹ Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA ¹ Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory, Palisades, New York, NY, USA

The importance of stratospheric water vapor (SWV) as a climate feedback remains highly uncertain. Here, we calculate the climate feedback of SWV under abrupt quadrupling of CO₂ for 24 CMIP5 models. All models robustly show a moistening of the stratosphere. This is associated with a multi-model, global mean net stratospheric adjusted radiative response of 0.89 ± 0.26 Wm⁻², with the stratospheric temperature adjustment being an important part of the response. We calculate a corresponding climate feedback of 0.18 ± 0.04 Wm⁻²K⁻¹, with a considerable inter-model range of 0.12 to 0.28 Wm⁻²K⁻¹. These effects are important for climate: the calculated feedback is on the same order of magnitude as the surface albedo and cloud feedbacks. Increases in SWV in the extratropical lowermost stratosphere drive mid-latitude peaks in the radiative response and cause the majority (~70%) of the global mean feedback. So, we suggest a future concentration in efforts in understanding drivers of water vapor variability in the extratropical lowermost stratosphere rather than in the tropical tropopause region.

Key words: stratospheric water vapor, climate feedback, stratosphere, radiation