The impact of stratosphere-troposphere exchange on atmospheric nitrous oxide (N₂O) and its isotopic budget in the troposphere

Qing LIANG¹, Paul A. NEWMAN¹, Bruce C. DAUBE², and Steve C. WOFSY²

¹ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ² Harvard University, Cambridge, MA 02138, USA

Nitrous oxide (N₂O) is the third most important anthropogenic greenhouse gas (GHG) in the atmosphere and a major ozone depleting substance (ODS) in the stratosphere. Although major N₂O sources are known, the magnitudes of individual sources, *i.e.*, ocean, natural soil, and anthropogenic activities, are highly uncertain. N₂O isotopologues increasingly have been used to investigate the magnitudes of N₂O sources and sinks. Balloon and aircraft measurements show that stratospheric N₂O is isotopologues the light N₂O isotopologue is preferentially photolyzed compared to the heavier isotopologues. On the other hand, terrestrial N₂O sources contain relatively more of the lighter isotopologue than mean tropospheric N₂O.

accurate model representation of stratospheric photochemical loss An and stratosphere-troposphere exchange (STE) is critical for the atmospheric budget of N₂O and emissions estimates. The inclusion of N₂O isotopes in 3-D model simulations will provide key additional elements in constraining the N₂O emissions using the atmospheric N₂O isotopic budget. We will conduct a 3-D model simulation of N₂O, its primary isotopologue (($^{14}N^{14}N^{16}O$) and three heavier isotopologues (¹⁴N¹⁴N¹⁸O, ¹⁴N¹⁵N¹⁶O and ¹⁵N¹⁴N¹⁶O) using the NASA Goddard GEOS-5 Chemistry Climate Model. The modeled N₂O will be compared with observations collected during the NASA Atmospheric Tomography Mission (ATom) available deployments, as well as early airborne missions, to evaluate the representation of STE on N₂O and its impact on atmospheric distribution and variability of N₂O. We will use the N₂O STE isotopologue tracers to track the stratospheric enrichment variations through the tropopause to the surface. These isotopologues will provide information on the stratospheric influx contribution to the tropospheric isotopic composition for δ^{18} O and $\delta^{15} N^{\text{bulk}}$.

Key words: N₂O, nitrous oxide, isotope, stratosphere-troposphere exchange