Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

 William T. BALL^{1,2}, Justin ALSING^{3,4}, Daniel J. MORTLOCK^{4,5,6}, Johannes STAEHELIN², Joanna D.
HAIGH^{4,7}, Thomas PETER², Fiona TUMMON², Rene STUEBI⁸, Andrea STENKE², John ANDERSON⁹, Adam BOURASSA¹⁰, Sean M. DAVIS^{11,12}, Doug DEGENSTEIN¹⁰, Stacey FRITH^{13,14}, Lucien
FROIDEVAUX¹⁵, Chris ROTH¹⁰, Viktoria SOFIEVA¹⁶, Ray WANG¹⁷, Jeannette WILD^{18,19}, Pengfei YU^{11,12}, Jerald R. ZIEMKE^{13,20}, and Eugene V. ROZANOV^{1,2}

 ¹Physikalisch-Meteorologisches Observatorium Davos World Radiation Centre, Davos Dorf, Switzerland;
²Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland;
³Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA;
⁴Physics Department, Imperial College London, UK;
⁵Department of Mathematics, Imperial College London, UK;
⁶Department of Astronomy, Stockholm University, Stockholm, Sweden;
⁷Grantham Institute – Climate Change and the Environment, Imperial College London, UK;
⁸Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, Switzerland;
⁹School of Science, Hampton University, Hampton, VA, USA;
¹⁰Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada;
¹¹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA;
¹²NOAA Earth System Research Laboratory, Boulder, CO, USA;
¹³NASA Goddard Space Flight Center, Greenbelt, MD, USA;
¹⁴Science Systems and Applications Inc., Lanham, MD, USA;
¹⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;
¹⁶Finnish Meteorological Institute, Earth Observation, Helsinki, Finland;
¹⁷School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA;
¹⁸NOAA/NWS/NCEP/Climate Prediction Center, College Park, MD, USA;
¹⁹Innovim LLC, Greenbelt, MD, USA;

The Montreal Protocol came into force to protect the ozone layer from ozone depleteing substances at the end of the 1980s. Nearly a decade later, the total column ozone stop decreasing. A recovery in the upper part of the ozone layer has been detected (between 32 and 48 km, between 60S and 60N), but a significant detection of recovery in the total column has remained elusive. We report evidence from multiple composites of satellite measurements, covering several decades, that lower stratospheric ozone has continued to decline from 1998 at mid- and tropical latitudes. Despite the upper stratospheric ozone recovery, the lower stratospheric decreases more than compensate for this increase, leading to the conclusion that stratospheric ozone as a whole, i.e. the ozone layer between 60S and 60N, was lower in 2016 than in 1998. We suggest that the apparent lack of a decreases in total column ozone is due to rising tropospheric column ozone that balances the stratospheric decreases. The reason for the decline is not clear are not well reproduced by most models, and urgently need to be understood. The results are placed in context of other new studies investigating changes in the ozone layer.

Key words: ozone, stratosphere, troposphere, trends