Stratospheric Ozone Loss over the Eurasian Continent Induced by the Polar Vortex Shift

Jiankai Zhang¹, Wenshou Tian^{1*}, Fei Xie², Martyn P. Chipperfield³, Wuhu Feng^{3,4}, Seok-Woo Son⁵, N. Luke Abraham^{6,7}, Alexander T. Archibald^{6,7}, Slimane Bekki⁸, Neal Butchart⁹, Makoto Deushi¹⁰, Sandip Dhomse³, Yuanyuan Han¹, Patrick Jöckel¹¹, Douglas Kinnison¹², Ole Kirner¹³, Martine Michou¹⁴, Olaf Morgenstern¹⁵, Fiona M. O'Connor⁹, Giovanni Pitari¹⁶, David A. Plummer¹⁷, Laura E. Revell^{18,19}, Eugene Rozanov^{18,20}, Daniele Visioni^{16,21}, Wuke Wang²², Guang Zeng¹⁵

¹College of Atmospheric Sciences, Lanzhou University, Lanzhou, China; ²Beijing Normal University, Beijing,
¹College of Atmospheric Sciences, Lanzhou University, Lanzhou, China; ²Beijing Normal University, Beijing,
²China; ³School of Earth and Environment, University of Leeds, Leeds, UK; ⁴NCAS, University of Leeds, Leeds, UK;
⁵School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea; ⁶NCAS, University of Cambridge, Cambridge, UK; ⁷Department of Chemistry, University of Cambridge, Cambridge, UK; ⁸LATMOS,
Paris, France; ⁹Met Office Hadley Centre, Exeter, UK; ¹⁰Meteorological Research Institute, Ibaraki, Japan; ¹¹DLR,
Wessling, Germany; ¹²NCAR, Boulder, USA; ¹³KIT, Karlsruhe, Germany; ¹⁴CNRM, Toulouse, France; ¹⁵NIWA,
Wellington, New Zealand; ¹⁶Università dell'Aquila, L'Aquila, Italy; ¹⁷Climate Research Branch, Montreal, Canada;
¹⁸ETHZ, Zürich, Switzerland; ¹⁹Bodeker Scientific, Alexandra, New Zealand; ²⁰PMOD/WRC, Davos Dorf, Switzerland; ²¹CETEMPS, Universitá dell'Aquila, L'Aquila, Italy; ²²Nanjing University, Nanjing, China

The Montreal Protocol has succeeded in limiting major ozone-depleting substance (ODS) emissions, and consequently stratospheric ozone concentrations are expected to recover this century. However, there is a large uncertainty in the rate of regional ozone recovery in the Northern Hemisphere. Here we identify a 'Eurasia-North America dipole' (ENAD) mode in the total column ozone (TCO) over the Northern Hemisphere, showing negative and positive TCO anomaly centres over Eurasia and North America, respectively. The positive trend of this mode explains an enhanced TCO decline over the Eurasian continent in the past three decades, which is closely related to the polar vortex shift towards Eurasia (Zhang et al., 2016). Multiple chemistry-climate-model simulations indicate that the positive ENAD trend in late winter is likely to continue in the near future. Our findings suggest that the anticipated ozone recovery in late winter will be sensitive not only to the ODS decline but also to the polar vortex changes, and could be substantially delayed in some regions of the Northern Hemisphere extratropics.

Key words: stratospheric ozone, polar vortex shift, climate change

References

Zhang, J., Tian, W., Chipperfield, M. P., Xie, F., and Huang, J., 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. *Nature Climate Change*, **6**(12), 1094-1099.